Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists discover long-sought 'pentaquark' particle

20.07.2015

Particle could help scientists better understand composition of matter

CERN's Large Hadron Collider announced Tuesday that researchers discovered a remarkable class of particles known as pentaquarks that could reshape scientists' understanding about the properties of matter.


Now that NSF-funded researchers have discovered the long-sought pentaquark, their next step is to study how quarks are bound together within this remarkable particle. They could be bound together tightly, as seen in this image.

Credit: CERN

Physicists have been searching pentaquarks for almost 50 years, but the research group that made the discovery, a Syracuse University team funded by the National Science Foundation (NSF), wasn't specifically looking for them. According to Syracuse physicist Sheldon Stone, graduate student Nathan Jurik was studying the decay of a different particle when the pentaquark was detected.

"We asked a graduate student to examine what we thought was an uninteresting and minor source of background events, just in case it happened to be a nasty source of experimental noise," Stone told Symmetry Magazine. "He did it begrudgingly but came back with a big smile on his face because there was a huge and unexpected signal. We told him to forget about what he was working on and focus on this instead."

... more about:
»LHCb »Large Hadron Collider »NSF »neutrons »protons

Atoms, and the protons and neutrons that make up their nuclei, are familiar terms in science. But quarks are even smaller particles--the building blocks of protons, neutrons and other subatomic particles known as baryons.

Baryons, including protons and neutrons, are composed of three quarks. A pentaquark is something different--a "composite state" that groups four quarks and one antiquark, the associated antimatter particle for a quark. Studying composite states can give scientists additional insight into the properties of ordinary baryons.

"Benefitting from the large data set provided by the LHC, and the excellent precision of our detector, we have examined all possibilities for these signals, and conclude that they can only be explained by pentaquark states," said LHCb physicist Tomasz Skwarnicki of Syracuse University, whose research group was a leader in the analysis. "More precisely the states must be formed of two up quarks, one down quark, one charm quark and one anti-charm quark."

The discovery was made by the CERN Large Hadron Collider b-quark (LHCb) experiment group , one of several ongoing particle physics experiments at the laboratory. LHCb studies antimatter and its relationship to matter. The group has submitted a paper reporting its findings to the journal Physical Review Letters.

U.S. participation in the experiment is funded entirely by NSF, which supports the research through nine awards to scientists from Syracuse University, the University of Maryland College Park, the Massachusetts Institute of Technology and the University of Cincinnati working at the Large Hadron Collider.

"The pentaquark is not just any new particle," said LHCb spokesperson Guy Wilkinson. "It represents a way to aggregate quarks, namely the fundamental constituents of ordinary protons and neutrons, in a pattern that has never been observed before in over fifty years of experimental searches. Studying its properties may allow us to understand better how ordinary matter, the protons and neutrons from which we're all made, is constituted."

Years' worth of other experiments searching for pentaquarks have proved inconclusive, leading some scientists to question their existence. LHCb's research looked for the particles from many perspectives, with all results pointing to the same conclusion. The group found the pentaquarks by examining the decay of a particular kind of baryon, known as Lambda b.

"While existence of pentaquarks was speculated on since the beginning of the quark model in 1964, it has taken 51 years to find a solid experimental evidence for their existence," Skwarnicki said. "A serious of dubious experimental claims of their discoveries over a decade ago, which were not confirmed by subsequent measurements, made many physicists doubt their existence. The observation by the LHCb collaboration reverses this trend and will lead to a better understanding of quark formations created by nuclear forces, with possible implications in astrophysics."

The group's next step will be to study how, exactly, quarks are bound together in pentaquarks--loosely or tightly. The answer to that question will play a key role in determining what pentaquarks can teach about the composition of ordinary matter.

Media Contact

Rob Margetta
rmargett@nsf.gov
703-292-8070

 @NSF

http://www.nsf.gov 

Rob Margetta | EurekAlert!

Further reports about: LHCb Large Hadron Collider NSF neutrons protons

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>