Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists' Analysis Leads to Discovery of New Particle

11.09.2008
University of Michigan physicists played a leading role in the discovery of a new particle, the Omega b baryon, which is an exotic relative of the proton. It was detected for the first time in a particle accelerator at Fermi National Accelerator Laboratory (Fermilab) in Illinois, Fermilab has announced.

The heavy particle is scarce today, but scientists believe it was abundant soon after the Big Bang.

"This discovery helps us understand how matter was formed in the universe. It shows the critical success of the quark model and gives us new insight into the strong force, which binds quarks together to form larger particles," said Jianming Qian, a professor in the Department of Physics.

This discovery is largely attributed to the work done by Qian, physics postdoctoral fellow Eduard de la Cruz Burelo and physics professor Homer Neal. They are among 600 physicists from 90 institutions involved in DZero, the international experiment at Fermilab that produced these results.

"The contributions from these three team members from the University of Michigan were extremely important to this discovery," said Fermilab's DZero spokesman Dmitri Denisov.

The Michigan scientists pressed to re-examine previously gathered data for evidence of this particle, rather than wait for new data. "Their persistence paid off," said Denisov, who pointed out that these three Michigan scientists were also instrumental in DZero's discovery of a particle called the cascade b baryon last year.

Qian said detecting the Omega b baryon was like finding a needle in a haystack. The U-M team developed algorithms that allowed them to analyze almost 100 trillion particle collisions to find 18 events with the distinctive characteristics expected from the decay of the Omega b baryon.

In the collisions in the experiment, protons and anti-protons traveling near the speed of light hit head on, occasionally producing exotic heavy particles such as the Omega b baryon. The baryon travels about one millimeter before it decays into other particles.

Baryons are particles that make up the visible matter in the universe today. Protons and neutrons are the lightest baryons. All baryons are made of different combinations of three quarks. Quarks are smaller particles that come in six "flavors:" up, down, charm, strange, top and bottom. Scientists organize these flavors into three families.

Protons and neutrons are made of the quarks in the first family: up and down quarks. This new particle is the first baryon ever detected that is made only of quarks from the other two families. The Omega b baryon has two strange quarks and one bottom quark.

DZero is supported by the U.S. Department of Energy, the National Science Foundation and several international funding agencies.

Burelo, Neal, and Qian are among the co-authors of a paper on the finding that has been submitted to Physical Review Letters. The paper is called "Observation of the doubly strange b baryon."

For more information:
Jianming Qian: http://www.lsa.umich.edu/physics/peopleprofile/0,2708,,00.html?ID=262
Homer Neal: http://www.ns.umich.edu/htdocs/public/experts/ExpDisplay.php?ExpID=901

Fermilab: http://www.fnal.gov/

Nicole Casal Moore | Newswise Science News
Further information:
http://www.umich.edu

Further reports about: Big Bang Fermilab Omega b baryon ProTon Quarks Universe neutrons

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>