Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists' Analysis Leads to Discovery of New Particle

11.09.2008
University of Michigan physicists played a leading role in the discovery of a new particle, the Omega b baryon, which is an exotic relative of the proton. It was detected for the first time in a particle accelerator at Fermi National Accelerator Laboratory (Fermilab) in Illinois, Fermilab has announced.

The heavy particle is scarce today, but scientists believe it was abundant soon after the Big Bang.

"This discovery helps us understand how matter was formed in the universe. It shows the critical success of the quark model and gives us new insight into the strong force, which binds quarks together to form larger particles," said Jianming Qian, a professor in the Department of Physics.

This discovery is largely attributed to the work done by Qian, physics postdoctoral fellow Eduard de la Cruz Burelo and physics professor Homer Neal. They are among 600 physicists from 90 institutions involved in DZero, the international experiment at Fermilab that produced these results.

"The contributions from these three team members from the University of Michigan were extremely important to this discovery," said Fermilab's DZero spokesman Dmitri Denisov.

The Michigan scientists pressed to re-examine previously gathered data for evidence of this particle, rather than wait for new data. "Their persistence paid off," said Denisov, who pointed out that these three Michigan scientists were also instrumental in DZero's discovery of a particle called the cascade b baryon last year.

Qian said detecting the Omega b baryon was like finding a needle in a haystack. The U-M team developed algorithms that allowed them to analyze almost 100 trillion particle collisions to find 18 events with the distinctive characteristics expected from the decay of the Omega b baryon.

In the collisions in the experiment, protons and anti-protons traveling near the speed of light hit head on, occasionally producing exotic heavy particles such as the Omega b baryon. The baryon travels about one millimeter before it decays into other particles.

Baryons are particles that make up the visible matter in the universe today. Protons and neutrons are the lightest baryons. All baryons are made of different combinations of three quarks. Quarks are smaller particles that come in six "flavors:" up, down, charm, strange, top and bottom. Scientists organize these flavors into three families.

Protons and neutrons are made of the quarks in the first family: up and down quarks. This new particle is the first baryon ever detected that is made only of quarks from the other two families. The Omega b baryon has two strange quarks and one bottom quark.

DZero is supported by the U.S. Department of Energy, the National Science Foundation and several international funding agencies.

Burelo, Neal, and Qian are among the co-authors of a paper on the finding that has been submitted to Physical Review Letters. The paper is called "Observation of the doubly strange b baryon."

For more information:
Jianming Qian: http://www.lsa.umich.edu/physics/peopleprofile/0,2708,,00.html?ID=262
Homer Neal: http://www.ns.umich.edu/htdocs/public/experts/ExpDisplay.php?ExpID=901

Fermilab: http://www.fnal.gov/

Nicole Casal Moore | Newswise Science News
Further information:
http://www.umich.edu

Further reports about: Big Bang Fermilab Omega b baryon ProTon Quarks Universe neutrons

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>