Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Optics: Nanotechnology’s benefits brought into focus

16.08.2013
Mathematical modeling confirms that a nanometer-scale device that can concentrate light into a tiny spot improves optical sensing

Conventional lenses, made of shaped glass, are limited in how precisely they can redirect beams of incoming light and make them meet at a point. Now, a team led by Zhengtong Liu at the A*STAR Institute of High Performance Computing, Singapore, has proposed a novel approach to ‘superlens’ systems that can surpass this classical limit of focusing light.

The team used numerical modeling to develop the design. Concentrating radiation into a smaller volume in this way enhances the interaction between light and matter, and thus the concept could prove useful in highly sensitive sensors of the future.

Light is a type of wave. Unlike the rise and fall in sea water at a beach, however, a light wave consists of oscillating electric and magnetic fields. The wavelength — the distance a wave travels in one oscillation cycle — imposes a limit on the minimum size to which light can be focused. However, this limit does not apply over small distances that are comparable to the wavelength, which is known as the near-field regime.

The researchers designed a silver nanostructure embedded in glass. Their device combined two separate elements. One component was a nanoantenna — similar to the radio-frequency antennas used to detect television-carrying signals, but reduced in size to match the wavelength of optical radiation. The other component was a superlens made of a thin slab of silver. The purpose of the superlens was to move the light detected by the nanoantenna into an imaging plane. “Using nanoantennas to concentrate light is not a new idea,” says Liu. “But by adding a superlens to translate the concentrated spot of light, we can overcome limitations imposed by the optical properties of the material.”

Liu and co-workers mathematically modeled the optical response of this device to an incoming beam of red light. They then altered the dimensions of the structure to maximize the enhancement in electric field. In this way, they were able to show that a 20-nanometer-thick superlens, separated by 34 nanometers from an antenna made of two silver ellipses, could increase the electric field of light by a factor of 250 (see image).

Confining light into these super intense ‘hot-spots’ could prove a boon for optical detection systems. “Our concept is targeted at biomedical and chemical sensing applications,” explains Liu. “The next step is to seek collaboration opportunities to actually make the sensor and test it in the field.”

The A*STAR-affiliated researchers contributing to this research are from the Institute of High Performance Computing

Journal information

Liu, Z., Li, E., Shalaev, V. M. & Kildishev, A. V. Near field enhancement in silver nanoantenna-superlens systems. Applied Physics Letters 101, 021109 (2012).

ResearchSEA Account for A*STAR | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

nachricht New survey hints at exotic origin for the Cold Spot
26.04.2017 | Royal Astronomical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>