Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Optical sensors improve railway safety

01.10.2013
Technology tested in Hong Kong proves effective at monitoring commuter rail lines and detecting dangerous conditions

A string of fiber-optic sensors running along a 36-km stretch of high-speed commuter railroad lines connecting Hong Kong to mainland China has taken more than 10 million measurements over the past few years in a demonstration that the system can help safeguard commuter trains and freight cars against accidents.

Attuned to the contact between trains and tracks, the sensors can detect potential problems like excessive vibrations, mechanical defects or speed and temperature anomalies. The system is wired to warn train operators immediately of such problems so that they can avoid derailments or other accidents, said Hwa-yaw Tam of the Hong Kong Polytechnic University, who will describe the technology and its test run next week at The Optical Society's (OSA) Annual Meeting, Frontiers in Optics (FiO) 2013, being held Oct. 6-10 in Orlando, Fla.

At least 30 times during the seven-year period, the system detected anomalous vibrations, Tam said. In a few cases, the vibrations turned out to be early warnings of dangerous emerging conditions that could have led to train wrecks. In some cases, vibration due to the use of the wrong type of lubrication oil in axle boxes was detected. The fiber-optic sensor system was designed for maintenance purposes and saves the rail company about $250,000 every year in maintenance costs.

"Using just this one type of technology, we are able to measure many things," Tam said. "This technology is perfect for railway systems." He added that it costs less than a third the price of other warning systems, which typically require data to be integrated from a half dozen different types of monitoring systems.

The system is now being installed in all commuter train routes in Hong Kong and will soon be rolled out in railways in parts of Singapore and Australia. With regular speeds for some of the trains in China topping out above 300 km per hour, the need for effective safety measures is profound, Tam said.

Worldwide, the rail industry is undergoing a major development boom, especially in places like China where tens of thousands of kilometers of new high-speed lines are planned for the next decade at an estimated cost of hundreds of billions of dollars.

How the System Works

The basis for the new sensor system is a technology developed in the 70s and 80s known as a Fiber Bragg grating, a type of sensor that reflects narrow spectra of light whose wavelengths shift due to temperature/strain variation. Coupling fiber Bragg gratings with another device known as mechanical transducers allows pressure, acceleration and other parameters to be measured.

The sensors are imbedded in mechanical compartments of a train or along the tracks. If there is a defect, like a sudden break in the rails or excessive vibrations because the weight of the train is off balance, those changes will alter the reflection spectra of FBGs in a detectable way.

The system is advantageous because it is all-optical, allowing the passive fiber Bragg grating sensors to monitor conditions along a train route, Tam said. It also relies exclusively on optical detection and communication, so there are no problems with electromagnetic interference from power lines that run parallel to many modern rail lines.

Presentation FW2I.3, "Distributed Optical Fiber Sensing Networks for Railway Monitoring," takes place Wednesday, Oct. 9 at 11:30 a.m. EDT at the Bonnet Creek Ballroom, Salon X at the Hilton Bonnet Creek in Orlando, Fla.

PRESS REGISTRATION: A press room for credentialed press and analysts will be located in the Hilton Bonnet Creek, Sunday through Thursday, Oct. 6-10. Those interested in obtaining a press badge for FiO should contact OSA's Lyndsay Meyer at 202.416.1435 or lmeyer@osa.org.

About the Meeting

Frontiers in Optics (FiO) 2013 is the Optical Society's (OSA) 97th Annual Meeting and is being held together with Laser Science XXIX, the annual meeting of the American Physical Society (APS) Division of Laser Science (DLS). The two meetings unite the OSA and APS communities for five days of quality, cutting-edge presentations, fascinating invited speakers and a variety of special events spanning a broad range of topics in optics and photonics—the science of light—across the disciplines of physics, biology and chemistry. An exhibit floor featuring leading optics companies will further enhance the meeting. More information at http://www.FrontiersinOptics.org.

About OSA

Founded in 1916, The Optical Society (OSA) is the leading professional society for scientists, engineers, students and business leaders who fuel discoveries, shape real-world applications and accelerate achievements in the science of light. Through world-renowned publications, meetings and membership programs, OSA provides quality research, inspired interactions and dedicated resources for its extensive global network of professionals in the optics and photonics field. For more information, visit http://www.osa.org.

Lyndsay Meyer | EurekAlert!
Further information:
http://www.osa.org

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

New 3-D model predicts best planting practices for farmers

26.06.2017 | Agricultural and Forestry Science

New research reveals impact of seismic surveys on zooplankton

26.06.2017 | Life Sciences

Correct connections are crucial

26.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>