Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Optical sensors improve railway safety

01.10.2013
Technology tested in Hong Kong proves effective at monitoring commuter rail lines and detecting dangerous conditions

A string of fiber-optic sensors running along a 36-km stretch of high-speed commuter railroad lines connecting Hong Kong to mainland China has taken more than 10 million measurements over the past few years in a demonstration that the system can help safeguard commuter trains and freight cars against accidents.

Attuned to the contact between trains and tracks, the sensors can detect potential problems like excessive vibrations, mechanical defects or speed and temperature anomalies. The system is wired to warn train operators immediately of such problems so that they can avoid derailments or other accidents, said Hwa-yaw Tam of the Hong Kong Polytechnic University, who will describe the technology and its test run next week at The Optical Society's (OSA) Annual Meeting, Frontiers in Optics (FiO) 2013, being held Oct. 6-10 in Orlando, Fla.

At least 30 times during the seven-year period, the system detected anomalous vibrations, Tam said. In a few cases, the vibrations turned out to be early warnings of dangerous emerging conditions that could have led to train wrecks. In some cases, vibration due to the use of the wrong type of lubrication oil in axle boxes was detected. The fiber-optic sensor system was designed for maintenance purposes and saves the rail company about $250,000 every year in maintenance costs.

"Using just this one type of technology, we are able to measure many things," Tam said. "This technology is perfect for railway systems." He added that it costs less than a third the price of other warning systems, which typically require data to be integrated from a half dozen different types of monitoring systems.

The system is now being installed in all commuter train routes in Hong Kong and will soon be rolled out in railways in parts of Singapore and Australia. With regular speeds for some of the trains in China topping out above 300 km per hour, the need for effective safety measures is profound, Tam said.

Worldwide, the rail industry is undergoing a major development boom, especially in places like China where tens of thousands of kilometers of new high-speed lines are planned for the next decade at an estimated cost of hundreds of billions of dollars.

How the System Works

The basis for the new sensor system is a technology developed in the 70s and 80s known as a Fiber Bragg grating, a type of sensor that reflects narrow spectra of light whose wavelengths shift due to temperature/strain variation. Coupling fiber Bragg gratings with another device known as mechanical transducers allows pressure, acceleration and other parameters to be measured.

The sensors are imbedded in mechanical compartments of a train or along the tracks. If there is a defect, like a sudden break in the rails or excessive vibrations because the weight of the train is off balance, those changes will alter the reflection spectra of FBGs in a detectable way.

The system is advantageous because it is all-optical, allowing the passive fiber Bragg grating sensors to monitor conditions along a train route, Tam said. It also relies exclusively on optical detection and communication, so there are no problems with electromagnetic interference from power lines that run parallel to many modern rail lines.

Presentation FW2I.3, "Distributed Optical Fiber Sensing Networks for Railway Monitoring," takes place Wednesday, Oct. 9 at 11:30 a.m. EDT at the Bonnet Creek Ballroom, Salon X at the Hilton Bonnet Creek in Orlando, Fla.

PRESS REGISTRATION: A press room for credentialed press and analysts will be located in the Hilton Bonnet Creek, Sunday through Thursday, Oct. 6-10. Those interested in obtaining a press badge for FiO should contact OSA's Lyndsay Meyer at 202.416.1435 or lmeyer@osa.org.

About the Meeting

Frontiers in Optics (FiO) 2013 is the Optical Society's (OSA) 97th Annual Meeting and is being held together with Laser Science XXIX, the annual meeting of the American Physical Society (APS) Division of Laser Science (DLS). The two meetings unite the OSA and APS communities for five days of quality, cutting-edge presentations, fascinating invited speakers and a variety of special events spanning a broad range of topics in optics and photonics—the science of light—across the disciplines of physics, biology and chemistry. An exhibit floor featuring leading optics companies will further enhance the meeting. More information at http://www.FrontiersinOptics.org.

About OSA

Founded in 1916, The Optical Society (OSA) is the leading professional society for scientists, engineers, students and business leaders who fuel discoveries, shape real-world applications and accelerate achievements in the science of light. Through world-renowned publications, meetings and membership programs, OSA provides quality research, inspired interactions and dedicated resources for its extensive global network of professionals in the optics and photonics field. For more information, visit http://www.osa.org.

Lyndsay Meyer | EurekAlert!
Further information:
http://www.osa.org

More articles from Physics and Astronomy:

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>