Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Open wide and say 'zap'

20.08.2009
Optics Express paper describes new way to clinically assess condition of tooth enamel using lasers

A group of researchers in Australia and Taiwan has developed a new way to analyze the health of human teeth using lasers. As described in the latest issue of Optics Express, the Optical Society's (OSA) open-access journal, by measuring how the surface of a tooth responds to laser-generated ultrasound, they can evaluate the mineral content of tooth enamel -- the semi-translucent outer layer of a tooth that protects the underlying dentin.

This is the first time anyone has been able to non-destructively measure the elasticity of human teeth, creating a method that can be used to assess oral health and predict emerging dental problems, such as tooth decay and cavities.

"The ultimate goal is to come up with a quick, efficient, cost-effective, and non-destructive way to evaluate the mineralization of human dental enamel," says David Hsiao-Chuan Wang, a graduate student at the University of Sydney in Australia and first author on the paper in Optics Express. Wang and his advisor Simon Fleming, a physics professor at the University of Sydney's Institute of Photonics and Optical Science, collaborated on the study with dental researchers at the University of Sydney and ultrasonic evaluation researchers at National Cheng Kung University in Tainan City, Taiwan.

Stronger than bone, enamel is the hardest and the most mineralized substance of the human body -- one of the reasons why human teeth can survive for centuries after a person has died. It envelops teeth in a protective layer that shields the underlying dentin from decay.

Throughout a person's lifetime, enamel constantly undergoes a cycle of mineral loss and restoration, in which healthy teeth maintain a high mineral content. If the balance between mineral loss and gain is lost, however, teeth can develop areas of softened enamel -- known as carious lesions -- which are precursors to cavities and permanently damaged teeth.

Enamel demineralization is caused by bad oral hygiene. Not brushing, for instance, can lead to the build-up of dental plaques, and bacteria in these plaques will absorb sugars and other carbohydrates a person chews and produce acids that will dissolve the minerals in tooth enamel.

Quantifying the mineral content of tooth enamel can help dentists determine the location and the severity of developing dental lesions. Existing methods for evaluating enamel are limited, however. Dentists can visually assess the teeth, but dental lesions can be hard to spot in certain parts of the mouth because they are obscured by dental plaque, saliva, or the structure of a tooth itself. Dentists can use sharp instruments to probe the enamel, but this can be destructive to the teeth and gums. X-ray scans can reveal dental lesions, but they give no information on the level of mineralization.

For research purposes, "nano-indentation" is commonly used for gaining information on the elasticity of tooth enamel -- a measure of its mineral content -- but nano-indentation destroys the measured regions of the enamel in the process and is only used to look at extracted teeth.

What Wang, Fleming, and their colleagues wanted to do was to develop a clinical method that would give as much information as nano-indentation and could be used to assess tooth enamel in actual patients while being completely non-destructive. So they developed a way to measure the elasticity of tooth enamel by adapting laser ultrasonic surface wave velocity dispersion, a method similar to what industrial engineers use to evaluate the integrity of thin films and metals.

The method uses short duration laser pulses to excite ultrasonic waves that propagate along the surface and penetrate only a small distance into a tooth. The velocity of these waves is influenced by the elastic properties of the enamel on a tooth, and by detecting the ultrasonic waves with fiber optics at various points, they can determine the enamel's elasticity, which is directly related to its mineralization.

In their Optics Express article, Wang, Fleming, and their colleagues showed that they could use this technique on extracted human teeth. They have not yet tested the technique on a living person's teeth, and it will likely take several years before any eventual device is ready for use in the dentist's office.

This work was funded by the Australian Government and Bio-Dental Technology Pty. Ltd.

Paper: "Laser Ultrasonic Surface Wave Dispersion Technique for Non-destructive Evaluation of Human Dental Enamel," Hsiao-Chuan Wang et al., Optics Express.

About OSA

Uniting more than 106,000 professionals from 134 countries, the Optical Society (OSA) brings together the global optics community through its programs and initiatives. Since 1916 OSA has worked to advance the common interests of the field, providing educational resources to the scientists, engineers and business leaders who work in the field by promoting the science of light and the advanced technologies made possible by optics and photonics. OSA publications, events, technical groups and programs foster optics knowledge and scientific collaboration among all those with an interest in optics and photonics.

Colleen Morrison | EurekAlert!
Further information:
http://www.osa.org

More articles from Physics and Astronomy:

nachricht Tracing aromatic molecules in the early universe
23.03.2017 | University of California - Riverside

nachricht New study maps space dust in 3-D
23.03.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Steep rise of the Bernese Alps

24.03.2017 | Earth Sciences

How cheetahs stay fit and healthy

24.03.2017 | Life Sciences

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>