Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Observed: The outburst before the blast

07.02.2013
Before they go all-out supernova, certain large stars undergo a sort of "mini-explosion," throwing a good-sized chunk of their material off into space.

Though several models predict this behavior and evidence from supernovae points in this direction, actually observations of such pre-explosion outbursts have been rare. In new research led by Dr. Eran Ofek of the Weizmann Institute, scientists found such an outburst taking place a short time – just one month – before a massive star underwent a supernova explosion.

The findings, which recently appeared in Nature, help to clarify the series of events leading up to the supernova, as well as providing insight into the processes taking place in the cores of such massive stars as they progress toward the final stage of their lives.

Ofek, a member of the Institute's Particle Physics and Astrophysics Department, is a participant in the Palomar Transient Factory (PTF) project (led by Prof. Shri Kulkarni of the California Institute of Technology), which searches the skies for supernova events using telescopes at the Palomar Observatory in California. He and a research team from Israel, the UK and the US decided to investigate whether outbursts could be connected to later supernovae by combing for evidence of them in observations that predated PTF supernova sightings, using tools developed by Dr. Mark Sullivan of the University of Southampton.

The fact that they found such an outburst occurring just a little over a month before the onset of the supernova explosion was something of a surprise, but the timing and mass of the ejected material helped them to validate a particular model that predicts this type of pre-explosion event. A statistical analysis showed that there was only a 0.1% chance that the outburst and supernova were unrelated occurrences.

The exploding star, known as a type IIn supernova, began as a massive star, at least 8 times the mass of our sun. As such a star ages, the internal nuclear fusion that keeps it going produces heavier and heavier elements – until its core is mostly iron. At that point, the weighty core quickly collapses inward and the star explodes.

The violence and mass of the pre-explosion outburst they found, says Ofek, point to its source in the star's core. The material is speedily ejected from the core straight through the star's surface by the excitation of gravity waves. The researchers believe that continued research in this direction will show such mini-explosions to be the rule for this type of supernova.

Also participating in this research were Prof. Avishay Gal-Yam, Dr. Ofer Yaron and Iair Arcavi of the Institute's Particle Physics and Astrophysics Department, and Prof. Nir Shaviv of the Hebrew University of Jerusalem.

Prof. Avishay Gal-Yam's research is supported by the Helen and Martin Kimmel Award for Innovative Investigation; the Nella and Leon Benoziyo Center for Astrophysics; and the Lord Sieff of Brimpton Memorial Fund.

Dr. Eran Ofek's research is supported by the Willner Family Leadership Institute. Dr. Ofek is the incumbent of the Arye and Ido Dissentshik Career Development Chair.

The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to 2,700 scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.

Weizmann Institute news releases are posted on the World Wide Web at http://wis-wander.weizmann.ac.il, and are also available at http://www.eurekalert.org.

Yivsam Azgad | EurekAlert!
Further information:
http://www.weizmann.ac.il

More articles from Physics and Astronomy:

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

nachricht NASA's fermi finds possible dark matter ties in andromeda galaxy
22.02.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>