Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nitrogen, Methane Dominate Icy Surface of Eris

01.10.2010
A team of scientists at Northern Arizona University, Missouri State University and Flagstaff’s Lowell Observatory recently revealed that the frozen surface of Eris, the largest-known dwarf planet orbiting the sun, is predominantly covered in nitrogen ice, similar to the surface of Pluto.

Stephen Tegler, NAU professor of physics and astronomy and lead author of “Methane and Nitrogen Abundances on Eris and Pluto,” will present the team’s findings Oct. 5 at the 42nd annual meeting of the American Astronomical Society’s Division for Planetary Sciences in Pasadena, Calif.

The paper also was submitted for publication to the Astrophysical Journal.

Tegler’s results integrated two years of work conducted in NAU’s new ice lab, in addition to astronomical observations of Eris from the Multiple Mirror Telescope Observatory from Mount Hopkins, Ariz., and of Pluto from Steward Observatory from Kitt Peak, Ariz.

“There are only a handful of such labs doing this kind of work in the world,” Tegler said. “By studying surfaces of icy dwarf planets, we hope to get a better understanding of the processes that affect their surfaces.”

NAU’s ice lab grew optically clear ice samples of methane, nitrogen, argon, methane-nitrogen mixtures and methane-argon mixtures in a vacuum chamber at temperatures as low as minus 390 degrees Fahrenheit to simulate the planets’ cold surfaces. Light passed through the samples revealed the “chemical finger prints” of molecules and atoms, which were compared to telescopic observations of sunlight reflected from the surfaces of Eris and Pluto.

“By combining the astronomical data and laboratory data, we found about 90 percent of Eris’s icy surface is made up of nitrogen ice and about 10 percent is made up of methane ice, which is not all that different from Pluto,” said David Cornelison, coauthor and physicist at Missouri State University.

Discovered in 2003 and named after the goddess of warfare and strife, Eris hit the astronomical map with the largest diameter of any known dwarf planet, consequently unseating its smaller neighbor Pluto from “official” to dwarf planet status. Since then, Eris has held the attention of astronomers and physicists as they strive to gain a better understanding of the farthest reaches of the solar system.

The recent findings will directly enhance NASA’s New Horizons spacecraft mission, currently scheduled to fly by Pluto in 2015, lending greater value to the continued research of Eris and Pluto.

William Grundy, an astronomer at Lowell Observatory, is a member of NASA’s New Horizons Team and contributing author of the paper.

“By measuring and then comparing and contrasting the properties of Eris and Pluto, we can better understand how planets in the outer solar system formed and then evolved over the last 4.5 billion years,” Grundy said.

Cindy Brown | Newswise Science News
Further information:
http://www.nau.edu

Further reports about: ERIS Icy Methane NASA’s Kepler Mission Observatory Pluto Surface dwarf planet nitrogen solar system

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>