Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIST technique could make sub-wavelength images at radio frequencies

18.06.2014

Imaging and mapping of electric fields at radio frequencies (RF)* currently requires the use of metallic structures such as dipoles, probes and reference antennas. To make such measurements efficiently, the size of these structures needs to be on the order of the wavelength of the RF fields to be mapped. This poses practical limitations on the smallest features that can be measured.

New theoretical and experimental work by researchers at the National Institute of Standards and Technology (NIST) and the University of Michigan suggests an innovative method to overcome this limit by using laser light at optical wavelengths to measure and image RF fields.


This is a laboratory apparatus for mapping and imaging of radio frequency (RF) electric fields at resolutions below the usual RF wavelength limit. Rubidium atoms are placed in the glass cylinder (on the right), which is illuminated at opposite ends by red and blue laser beams. The cylinder (2.5 by 7.5 centimeters in size) moves left on a track to enable the narrow laser beams to scan its entire width. The antenna (on the left) generates an RF field, which, depending on its frequency, has a certain effect on the spectrum of light absorbed by the atoms. By measuring this effect researchers can calculate and map the RF field strength as a function of position in the cylinder.

Credit: Holloway/NIST

The new technique uses a pair of highly stable lasers and rubidium atoms as tunable resonators to map and potentially image electric fields at resolutions far below their RF wavelengths (though not below the much shorter wavelengths of the lasers).

This advance could be useful in measuring and explaining the behavior of metamaterials and metasurfaces-structures engineered to have electromagnetic properties not found in nature, such as the illusion of invisibility. Imaging with sub-RF wavelength resolution also could help measure and optimize properties of densely packaged electronics and lead to new microscopy systems and imaging sensors.

Typically, RF field measurements are averaged over antenna dimensions of tens of millimeters (thousandths of a meter) or more. NIST's prototype technique has resolution limited by the beam widths of the two lasers used-in the range of 50 to 100 micrometers (millionths of a meter.) The technique was used to map RF fields with much longer wavelengths of 2863 and 17,605 micrometers (frequencies of 104.77 gigahertz and 17.04 gigahertz), respectively.**

The NIST and Michigan researchers mapped field strength as a function of position at resolutions as low as one-hundredth of an RF wavelength, far below normal antenna limits. Such data might be used to make colorized 2D images. In theory, the technique should work for wavelengths ranging from 600 to 300,000 micrometers.

The rubidium atoms are in a hollow glass cylinder (see photo), which is traversed down its length by two overlapping laser beams that act as stimulants and filters. First, a red laser excites the atoms, which initially absorb all the light. Then, a tunable blue laser excites the atoms to one of many possible higher energy ("Rydberg") states, which have novel properties such as extreme sensitivity and reactivity to electromagnetic fields.

Next an RF field-at the frequency to be mapped or imaged-is applied. This field alters the frequency at which the atoms vibrate, or resonate, altering the frequencies at which the atoms absorb the red light. This change in the absorption is easily measured and is directly related to the electric field strength at that part of the cylinder. By moving the cylinder sideways on a track across the narrow laser beams, researchers can map the changing field strength across its diameter. The blue laser can be tuned to excite the atoms to different states to measure the strength of different RF frequencies.

In the demonstration, researchers measured the strength of standing waves at specific locations inside the glass cylinder. For the two frequencies studied, measurements of the field agreed with results from numerical simulations.

The imaging technique is a spinoff of an ongoing NIST effort to develop a method that will, for the first time, directly link electric field measurements to the International System of Units (SI).

NIST developed the new measurement and imaging technique. University of Michigan co-authors provided the tunable blue laser and assisted in the measurements. The project is funded in part by the Defense Advanced Research Projects Agency.

###

* The term RF is used here to span the conventional radio, microwave, millimeter wave and terahertz frequency bands.
** C.L. Holloway, J.A. Gordon, A. Schwarzkopf, D. Anderson, S. Miller, N. Thaicharoen and G. Raithel. Sub-wavelength imaging and field mapping via EIT and Autler-Townes splitting in Rydberg atoms. Applied Physics Letters. 104, 244102; Posted online June 16, 2014. doi:10.1063/1.4883635

Laura Ost | Eurek Alert!

Further reports about: NIST cylinder frequencies lasers measurements micrometers properties wavelength wavelengths

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>