Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIST chips help BICEP2 telescope find direct evidence of origin of the universe

19.03.2014

The view back in time—way back to the origins of the universe—just got clearer. Much clearer.

A team of U.S. cosmologists using the BICEP2 telescope at the South Pole announced this week that they have discovered the first direct evidence of the rapid inflation of the universe at the dawn of time, thanks in part to technology developed and built by the National Institute of Standards and Technology (NIST).


NIST chip identical to the 16 chips integrated into the BICEP2 telescope camera at the South Pole. Each custom superconducting circuit chip amplifies the electrical signals generated by 32 microwave detectors and assembles them into a sequential time stream.

Credit: Schmidt/NIST


BICEP2 telescope focal plane array (camera) using NIST SQUID chips.

Credit: Anthony Turner/JPL

The BICEP2 camera relies, in part, on the extraordinary signal amplification made possible by NIST's superconducting quantum interference devices (SQUIDs).

The team of cosmologists from Harvard University, the University of Minnesota, the California Institute of Technology/Jet Propulsion Laboratory (JPL) and Stanford University/SLAC used BICEP2 to observe telltale patterns in the cosmic microwave background—the afterglow of the Big Bang almost 14 billion years ago—that support the leading theory about the origins of the universe.

The patterns, so-called "B-mode polarization," are the signature of gravitational waves, or ripples in space-time. These waves are direct evidence that the currently observable universe expanded rapidly from a subatomic volume in the first tiny fraction of a second after the Big Bang. The project was funded by the National Science Foundation.

Researchers at NIST's campus in Boulder, Colo., made the custom superconducting circuits, or chips, that amplify electrical signals generated by microwave detectors measuring primordial particles of light. JPL made the detectors. The NIST chips, which along with the detectors are chilled to cryogenic temperatures, also assemble the signals into a sequential time stream that can be read by conventional room-temperature electronics.

"This is an exciting and important new result, and we are pleased that technology developed at NIST played a role," said physicist Gene Hilton, who was responsible for production of the NIST chips.

The 16 NIST chips contain a total of more than 2,000 SQUIDs, which measure the magnetic fields created in coils that carry and amplify the very small currents generated by the detectors. NIST researchers invented a method for wiring hundreds of SQUID signal amplifiers together to make large arrays of superconducting detectors practical—part of the cutting-edge technology that helps make BICEP2 especially powerful.

Physicists just celebrated the 50th anniversary of the SQUID, which has broad applications from medicine to mining and materials analysis—and now more than ever, cosmology.

###

For more on the BICEP2 discovery, see the Harvard announcement, "First Direct Evidence of Cosmic Inflation," at http://www.cfa.harvard.edu/news/2014-05.

Laura Ost | EurekAlert!

Further reports about: B-mode polarization Big Bang Harvard NIST SQUID Technology conventional detectors materials signals waves

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>