Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New NASA Model Gives Glimpse into the Invisible World of Electric Asteroids

26.06.2014

Space may appear empty -- a soundless vacuum, but it's not an absolute void. It flows with electric activity that is not visible to our eyes. NASA is developing plans to send humans to an asteroid, and wants to know more about the electrical environment explorers will encounter there.

A solar wind blown from the surface of the sun at about a million miles per hour flows around all solar system objects, forming swirling eddies and vortices in its wake. Magnetic fields carried by the solar wind warp, twist, and snap as they slam into the magnetic fields around other objects in our solar system, blasting particles to millions of miles per hour and sending electric currents surging in magnetic storms that, around Earth, can damage sensitive technology like satellites and power grids.


This is a concept image of an astronaut preparing to take samples from a captured asteroid. The sun is in the background; NASA wants to know more about electrical activity generated by the interaction of solar wind and radiation with asteroids.

Image Credit: NASA


Electric field direction (arrows) and strength (colors) produced by the simulated interaction of the solar wind with a small irregularly shaped asteroid, about 150 meters (yards) long by 50 meters wide. The deepest shades of red indicate strong and possibly hazardous electric fields.

Image Credit: NASA/JHU-APL/Michael Zimmerman

On airless objects like moons and asteroids, sunlight ejects negatively charged electrons from matter, giving sunlit areas a strong positive electric charge. The solar wind is an electrically conducting gas called plasma where matter has been torn apart into electrons, which are relatively light, and positively charged ions, which are thousands of times more massive. While areas in sunlight can charge positive, areas in shadow get a strong negative charge when electrons in the solar wind rush in ahead of heavier ions to fill voids created as the solar wind flows by.

The surface of Earth is shielded from the direct effects of this activity by our planet's magnetic field, but airless objects without strong repelling magnetic fields, like small asteroids, have no protection from electrical activity in space.

NASA-sponsored researchers funded by the Solar System Exploration Research Virtual Institute (SSERVI) (formerly the NASA Lunar Science Institute (NLSI)) have developed a new computer model that can predict and visualize the interaction between the solar wind, solar radiation, and the surface of asteroids in unprecedented detail. 

"Our model is the first to provide detailed, two-dimensional views of the complex interaction between solar activity and small objects like asteroids, using an adaptive computational technique that makes these simulations highly efficient," said Michael Zimmerman, project lead at the Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland.

Previous "grid-type" models are less efficient at calculating the effects of solar activity on complex surfaces like asteroids because they devote computer resources equally to all areas, according to Zimmerman. His new "tree code" model continually adapts to the flowing plasma, applying the most resources to areas with lots of complex activity, while devoting less to areas that are simpler.

"Our model can calculate a solar activity-asteroid interaction in a few days," said Zimmerman. "It would probably take a few weeks – or a supercomputer – for a grid-type model to do the same at high resolution." Zimmerman is lead author of a paper on this research available online in the journal Icarus since April 4, 2014.

Zimmerman and his team plan to apply the model to see if the electrical activity around asteroids presents any potential hazards to human explorers.

"For example, understanding the electrical environment around an asteroid could help identify locations where astronauts can safely make first contact with the object," said co-author William Farrell of NASA's Goddard Space Flight Center in Greenbelt, Maryland. "If an astronaut is tethered to a spacecraft that is in sunlight and positively charged, and touches a negatively charged asteroid surface in shadow, there could be an unexpected current flow between the two systems upon contact. We simply can't speculate on the nature of that current without this model."

The model also can be used to predict interactions between an asteroid and the spacecraft itself. "One of the reasons we're visiting asteroids is because they are relatively pristine remnants from the formation of the solar system, so they give clues as to how the planets formed and life originated," says Farrell.

"However, spacecraft release gases (like water) that ionize, and these spacecraft-emitted ions likely will contaminate the surfaces of the asteroids we want to study. This new asteroid model will allow us to estimate the degree of ion collection and contamination over various regions." Farrell is the Principal Investigator of one of SSERVI's nine teams called the Dynamic Response of the Environment at Asteroids, the Moon, and moons of Mars (DREAM2), which provided a portion of the funding to develop the model.

The model shows that the solar wind flow at a small asteroid displays some phenomena that have been observed directly at the moon, giving confidence in its results. For example, a well-developed cloud of electrons ejected by sunlight forms on the asteroid's sunlit surface, while a low density supersonic wake streams behind the object in the solar wind flow. However, as with any computer model, these elements will have to be verified by actual measurements from future missions to asteroids.

"Eventually, we also plan to expand the capability of the model by making predictions and visualizations in three dimensions, as well as adding the capability to simulate electrically conductive exploration infrastructure as well as magnetic field effects," says Zimmerman.

This research was supported by an appointment to the NASA Postdoctoral Program at Goddard, administered by Oak Ridge Associated Universities through a contract with NASA. It also was supported by the NLSI and SSERVI, based and managed at NASA's Ames Research Center in Moffett Field, California.

SSERVI is a virtual institute that, together with international partnerships, brings science and exploration researchers together in a collaborative virtual setting. SSERVI is funded by the Science Mission Directorate and Human Exploration and Operations Mission Directorate at NASA Headquarters in Washington.

For more information about SSERVI and selected member teams, visit: http://sservi.nasa.gov 

Bill Steigerwald | Eurek Alert!

Further reports about: Asteroids Earth Electric Exploration Flight NASA Science Space activity electric charge solar wind surfaces

More articles from Physics and Astronomy:

nachricht OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth
28.08.2015 | University of Oklahoma

nachricht Successful Boron-Doping of Graphene Nanoribbon
27.08.2015 | Universität Basel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

Im Focus: Self-healing landscape: landslides after earthquake

In mountainous regions earthquakes often cause strong landslides, which can be exacerbated by heavy rain. However, after an initial increase, the frequency of these mass wasting events, often enormous and dangerous, declines, in fact independently of meteorological events and aftershocks.

These new findings are presented by a German-Franco-Japanese team of geoscientists in the current issue of the journal Geology, under the lead of the GFZ...

Im Focus: FIC Proteins Send Bacteria Into Hibernation

Bacteria do not cease to amaze us with their survival strategies. A research team from the University of Basel's Biozentrum has now discovered how bacteria enter a sleep mode using a so-called FIC toxin. In the current issue of “Cell Reports”, the scientists describe the mechanism of action and also explain why their discovery provides new insights into the evolution of pathogens.

For many poisons there are antidotes which neutralize their toxic effect. Toxin-antitoxin systems in bacteria work in a similar manner: As long as a cell...

Im Focus: Fraunhofer IPA develops prototype of intelligent care cart

It comes when called, bringing care utensils with it and recording how they are used: Fraunhofer IPA is developing an intelligent care cart that provides care staff with physical and informational support in their day-to-day work. The scientists at Fraunhofer IPA have now completed a first prototype. In doing so, they are continuing in their efforts to improve working conditions in the care sector and are developing solutions designed to address the challenges of demographic change.

Technical assistance systems can improve the difficult working conditions in residential nursing homes and hospitals by helping the staff in their work and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

Large agribusiness management strategies

19.08.2015 | Event News

 
Latest News

A Barcode For Shredding Junk RNA

28.08.2015 | Life Sciences

OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

28.08.2015 | Physics and Astronomy

Two satellites see newborn Tropical Storm Jimena consolidating

28.08.2015 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>