Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neon lights up exploding stars

15.01.2013
An international team of nuclear astrophysicists has shed new light on the explosive stellar events known as novae.
These dramatic explosions are driven by nuclear processes and make previously unseen stars visible for a short time. The team of scientists measured the nuclear structure of the radioactive neon produced through this process in unprecedented detail.

Their findings, reported in the US journal Physical Review Letters, show there is much less uncertainty in how quickly one of the key nuclear reactions will occur as well as in the final abundance of radioactive isotopes than has previously been suggested.

Led by the University of York, UK, and Universitat Politècnica de Catalunya and the Institut d'Estudis Espacials de Catalunya, Spain, the findings will help with the interpretation of future data from gamma ray observing satellites.

While large stars end their lives with spectacular explosions called supernovae, smaller stars, known as white dwarf stars, sometimes experience smaller, but still dramatic explosions called novae. The brightest nova explosions are visible to the naked eye.

A nova occurs when a white dwarf is close enough to a companion star to drag matter – mostly hydrogen and helium – from the outer layers of that star onto itself, building up an envelope. When enough material has accumulated on the surface, a burst of nuclear fusion occurs, causing the white dwarf to brighten and expel the remaining material. Within a few days to months, the glow subsides. The phenomenon is expected to recur after typically 10,000 to 100,000 years.

Traditionally novae are observed in the visible and nearby wavelengths, but this emission only shows up about a week after the explosion and therefore only gives partial information on the event.

Dr Alison Laird, from the University of York's Department of Physics, said: "The explosion is fundamentally driven by nuclear processes. The radiation related to the decay of isotopes - in particular that from an isotope of fluorine - is actively being sought by current and future gamma ray observing satellite missions as it provides direct insight into the explosion.

"However, to be interpreted correctly, the nuclear reaction rates involved in the production of the fluorine isotope must be known. We have demonstrated that previous assumptions about key nuclear properties are incorrect and have improved our knowledge of the nuclear reaction pathway."

The experimental work was carried out at the Maier-Leibnitz Laboratory in Garching, Germany, and scientists from the University of Edinburgh played a key role in the interpretation of the data. The study also involved scientists from Canada and the United States.

Dr Anuj Parikh, from the Departament de Fisica i Enginyeria Nuclear at the Universitat Politècnica de Catalunya, said: "The observation of gamma-rays from novae would help to better determine exactly what chemical elements are synthesized in these astrophysical explosions. In this work, details required to calculate the production of the key radioactive fluorine isotope have been measured precisely. This will allow more detailed investigation of the processes and reactions behind the nova."

This work is part of an ongoing programme of research studying how the elements are synthesised in stars and stellar explosions.

The UK researchers received funding from the Science Technology Funding Council (STFC), and the project received further support from the Spanish MICINN, the EU Feder funds and ESF EUROCORES Program EuroGENESIS.

Caron Lett | EurekAlert!
Further information:
http://www.york.ac.uk

More articles from Physics and Astronomy:

nachricht A better way to weigh millions of solitary stars
15.12.2017 | Vanderbilt University

nachricht A chip for environmental and health monitoring
15.12.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>