Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Webb's Heart Survives Deep Freeze Test

22.10.2014

After 116 days of being subjected to extremely frigid temperatures like that in space, the heart of the James Webb Space Telescope, the Integrated Science Instrument Module (ISIM) and its sensitive instruments, emerged unscathed from the thermal vacuum chamber at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

Teams of engineers and technicians have been on heart-monitoring duty around the clock since this complicated assembly was lowered into the chamber for its summer-long test.  


A crane lifts the heart of the James Webb Space Telescope from the Goddard Thermal Vacuum Chamber where it spent weeks in a space-like environment.

Image Credit: NASA/Chris Gunn


The view from inside NASA Goddard's Thermal Vacuum Chamber shows the JWST heart being lowered by crane in preparation of weeks of space environment testing.

Image Credit: NASA/Chris Gunn

Engineer Mike Drury, the ISIM Lead Integration and Test Engineer, is one of the test directors making sure that Webb will thrive in the frigid conditions at its final destination in space one million miles away from Earth. "The telescope is going to L2 or Lagrange Point 2, which is a very extreme environment," said Drury. "The heart of Webb called ISIM is a very important part of the observatory and will provide all of Webb's images."

These images will reveal the first galaxies forming 13.5 billion years ago. The telescope will also pierce through interstellar dust clouds to capture stars and planets forming in our own galaxy. Operating a telescope powerful enough to complete these tasks requires incredibly cold temperatures.

How cold? Try -387 degrees Fahrenheit, or 40 degrees Kelvin. This is 260 degrees Fahrenheit colder than any place on the Earth’s surface has ever been. To create temperatures that cold on Earth, the team uses the massive thermal vacuum chamber at Goddard called the Space Environment Simulator, or SES, that duplicates the vacuum and extreme temperatures of space. This 40-foot-tall, 27-foot-diameter cylindrical chamber eliminates the tiniest trace of air with vacuum pumps and uses liquid nitrogen and even colder liquid helium to drop the temperature simulating the space environment.

"We complete these tests to make sure that when this telescope cools down, the four parts of the heart are still positioned meticulously so that when light enters the telescope we capture it the right way," said Paul Geithner, Webb's deputy project manger. "The biggest stress for this telescope will be when it cools down. When the telescope structure goes from room temperature to its super cold operating temperature, it will see more stress from shrinkage than it will from violent vibration during launch,” said Geithner.

NASA photographer Desiree Stover captured the photo of ISIM as it was lowered into the chamber for testing. The heart of the telescope weighs about as much as an elephant. Inside its black composite frame the four science instruments are tightly packed and are specially designed to capture specific information about distant light in the universe. 

"When I first started here at Goddard, the ISIM structure was completely bare," said Stover who has been at Goddard for two years. "Leading up to this test all four science instruments were integrated onto it, along with heat straps, harnesses and blankets."

Tightening the bolts and putting everything together beforehand required very dedicated teams. "When ISIM was lowered into the chamber at the start of the test, that was a pretty emotional moment that represented an intense amount of work," said Marc Sansebastian, a mechanical assembly, integration and test technician. "After ISIM traveled overhead, we shifted back to technical mode because there are a million things that happen that you don't see."

At any given time of day during the test, the control room held representatives from all four-instrument teams. Each instrument has a test engineer, who makes sure the test is going well, and a data analyzer. Those teams are testing the hundreds of electrical connections and computer programs that give life to Webb's heart. "Kind of like having a car in a garage in the winter. You want to check the car to make sure that it is still working," said Alistair Glasse, instrument scientist for the Mid-Infrared Instrument (MIRI).

"The weather this year was phenomenal for the test. When the weather is bad, when it's humid and when it gets stormy that's when we run into problems with the chamber," said Ray Lundquist, ISIM Lead Systems Engineer. "At the beginning of the test, we had a couple of storms and the building got hit by lightning that shut the whole system down for 30 minutes, but since that storm we have had really great weather."

Once the test was completed, the team warmed up the chamber, and completed the final functional test and a series of data analyses before they opened up the chamber.

"We've been very fortunate on this test. We've worked with all of the different teams. We have all been working shifts and pitching in," said Drury. "I'm really amazed at how well everyone is getting along together. We have a lot of people who are willing to help out."

The James Webb Space Telescope is the scientific successor to NASA's Hubble Space Telescope. It will be the most powerful space telescope ever built. Webb is an international project led by NASA with its partners, the European Space Agency and the Canadian Space Agency.

Learn more about the Webb telescope at:

www.jwst.nasa.gov -- or -- www.nasa.gov/webb 

Laura Betz
NASA's Goddard Space Flight Center, Greenbelt, Md.

Rob Gutro | Eurek Alert!
Further information:
http://www.nasa.gov/content/goddard/nasa-webbs-heart-survives-deep-freeze-test/

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>