Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Orbiter Captures Martian Sand Dunes in Motion

22.11.2011
Images from NASA's Mars Reconnaissance Orbiter show sand dunes and ripples moving across the surface of Mars at dozens of locations and shifting up to several yards. These observations reveal the planet's sandy surface is more dynamic than previously thought.

"Mars either has more gusts of wind than we knew about before, or the winds are capable of transporting more sand," said Nathan Bridges, planetary scientist at the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., and lead author of a paper on the finding published online this month in the journal Geology. "We used to think of the sand on Mars as relatively immobile, so these new observations are changing our whole perspective."

While red dust is known to swirl all around Mars in storms and dust devils, the planet's dark sand grains are larger and harder to move. Less than a decade ago, scientists thought the dunes and ripples on Mars either did not budge or moved too slowly for detection.

MRO was launched in 2005. Initial images from the spacecraft's High Resolution Imaging Science Experiment (HiRISE) camera documented only a few cases of shifting sand dunes and ripples, collectively called bedforms. Now, after years of monitoring the Martian surface, the spacecraft has documented movements of a few yards (or meters) per year in dozens of locations across the planet.

The air on Mars is thin, so stronger gusts of wind are needed to push a grain of sand. Wind-tunnel experiments have shown that a patch of sand would take winds of about 80 mph (nearly 130 kilometers per hour) to move on Mars compared with only 10 mph (about 16 kilometers per hour) on Earth. Measurements from the meteorology experiments on NASA's Viking landers in the 1970s and early 1980s, in addition to climate models, showed such winds should be rare on Mars.

The first hints that Martian dunes move came from NASA's Mars Global Surveyor, which operated from 1997 to 2006. But the spacecraft's cameras lacked the resolution to definitively detect the changes. NASA's Mars Exploration Rovers also detected hints of shifting sand when they touched down on the Red Planet's surface in 2004. The mission team was surprised to see grains of sand dotting the rovers' solar panels. They also witnessed the rovers' track marks filling in with sand.

"Sand moves by hopping from place to place," said Matthew Golombek, a co-author of the new paper and a member of the Mars Exploration Rover and Mars Reconnaissance Orbiter teams at NASA's Jet Propulsion Laboratory in Pasadena, Calif. "Before the rovers landed on Mars, we had no clear evidence of sand moving."

Not all of the sand on Mars is blowing in the wind. The study also identifies several areas where the bedforms did not move.

"The sand dunes where we didn't see movement today could have larger grains, or perhaps their surface layers are cemented together," said Bridges, who also is a member of the HiRISE team. "These studies show the benefit of long-term monitoring at high resolution."

According to scientists, the seemingly stationary areas might move on much larger time scales, triggered by climate cycles on Mars that last tens of thousands of years. The tilt of Mars' axis relative to its orbital plane can vary dramatically. This, combined with the oval shape of Mars' orbit, can cause extreme changes in the Martian climate, much greater than those experienced on Earth. Mars may once have been warm enough that the carbon dioxide now frozen in the polar ice caps could have been free to form a thicker atmosphere, leading to stronger winds capable of transporting sand.

HiRISE, one of six instruments on the Mars Reconnaissance Orbiter, is operated by the University of Arizona in Tucson. The instrument was built by Ball Aerospace & Technologies Corp. of Boulder, Colo. APL provided and operates the MRO’s Compact Reconnaissance Imaging Spectrometer (CRISM). The Mars Exploration Rovers Opportunity and Spirit were built by JPL. JPL also manages the MRO and Mars Exploration Rover projects for NASA's Science Mission Directorate in Washington. MRO images and additional information are available online at http://www.nasa.gov/MRO. For more information about NASA Mars missions, visit the Web at: www.nasa.gov/mars.

The Applied Physics Laboratory, a not-for-profit division of The Johns Hopkins University, meets critical national challenges through the innovative application of science and technology. For more information, visit www.jhuapl.edu.

Geoffrey Brown | Newswise Science News
Further information:
http://www.jhuapl.edu

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>