Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Global Precipitation Measurement Mission Passes Major Review

10.12.2009
NASA's effort to deploy the first satellite mission to advance global precipitation observations from space moved closer to this goal when agency officials approved critical elements for the Global Precipitation Measurement (GPM) mission on Dec. 2.

NASA gave GPM the green light to proceed to the mission implementation phase in a review meeting chaired by NASA’s Associate Administrator Christopher Scolese.

Building on the success of the Tropical Rainfall Measuring Mission (TRMM), a joint project between NASA and the Japan Aerospace Exploration Agency (JAXA), GPM will usher in a new generation of space-based observations of global precipitation, a key element of the Earth’s climate and also the primary source of freshwater. GPM is an international collaboration that currently includes NASA and JAXA, with anticipated contributions from additional international partners.

"This joint NASA/JAXA mission is scientifically important and stands as a prime example of the power of international cooperation in Earth observations," said NASA’s Earth Science Division director Michael Freilich. "GPM's global precipitation measurements will advance our abilities to monitor and accurately predict precipitation on a global basis. GPM builds on the strong scientific and technical collaborations developed between NASA and JAXA. GPM instruments will also provide key calibration references to allow measurements from a wide variety of other satellite missions, including those from other U.S. and international organizations, to be combined to provide accurate predictions and global data sets."

The heart of the GPM mission is a spaceborne Core Observatory that serves as a reference standard to unify and advance measurements from a constellation of multinational research and operational satellites carrying microwave sensors. GPM will provide uniformly calibrated precipitation measurements globally every 2-4 hours for scientific research and societal applications. The GPM Core Observatory sensor measurements will for the first time make quantitative observations of precipitation particle size distribution, which is key to improving the accuracy of precipitation estimates by microwave radiometers and radars.

The GPM Core Observatory will carry a Dual-frequency Precipitation Radar (DPR) and a multi-channel GPM Microwave Imager (GMI). DPR will have greater measurement sensitivity to light rain and snowfall compared to the TRMM radar. GMI uses a set of frequencies to retrieve heavy, moderate, and light precipitation from emission and scattering signals of water droplets and ice particles.

GPM is the cornerstone of the multinational Committee on Earth Observation Satellites Precipitation Constellation that addresses one of the key observations of the Global Earth Observation System of Systems.

NASA is responsible for the GPM Core Observatory spacecraft bus, the GMI carried on it, the Core Observatory integration, launch site processing, mission operation and science data processing and distribution. NASA is also responsible for the development of a second GMI to be flown on a partner-provided Low-Inclination Observatory (LIO) and the Instrument Operational Center for the LIO. The GPM Core Observatory is scheduled for launch in July 2013 from JAXA’s Tanegashima launch site on an H-IIA rocket.

NASA’s Goddard Space Flight Center in Greenbelt, Md., manages the GPM mission on behalf of the Earth Science Division of the Science Mission Directorate at NASA Headquarters. Goddard oversees the in-house Core Observatory development and the GMI acquisition from Ball Aerospace & Technologies Corporation of Boulder, Colo. The GPM project life cycle cost is $978 million.

Sarah DeWitt | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/centers/goddard/news/gpm_review.html

More articles from Physics and Astronomy:

nachricht The moon is front and center during a total solar eclipse
24.07.2017 | NASA/Goddard Space Flight Center

nachricht Superluminous supernova marks the death of a star at cosmic high noon
24.07.2017 | Royal Astronomical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>