Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's Hubble spots rare gravitational arc from distant, hefty galaxy cluster

27.06.2012
Seeing is believing, except when you don't believe what you see.

Astronomers using NASA's Hubble Space Telescope have found a puzzling arc of light behind an extremely massive cluster of galaxies residing 10 billion light-years away.


Astronomers using NASA's Hubble Space Telescope have found a puzzling arc of light behind an extremely massive cluster of galaxies residing 10 billion light-years away. The galactic grouping, discovered by NASA's Spitzer Space Telescope, was observed when the universe was roughly a quarter of its current age of 13.7 billion years. The giant arc is the stretched shape of a more distant galaxy whose light is distorted by the monster cluster's powerful gravity, an effect called gravitational lensing.

Credit: Credit: NASA, ESA, A. Gonzalez (University of Florida, Gainsville), M. Brodwin (University of Missouri-Kansas City), and A. Stanford (University of California at Davis)

The galactic grouping, discovered by NASA's Spitzer Space Telescope, was observed when the universe was roughly a quarter of its current age of 13.7 billion years. The giant arc is the stretched shape of a more distant galaxy whose light is distorted by the monster cluster's powerful gravity, an effect called gravitational lensing.

The trouble is, the arc shouldn't exist.

"When I first saw it, I kept staring at it, thinking it would go away," said study leader Anthony Gonzalez of the University of Florida in Gainesville. "According to a statistical analysis, arcs should be extremely rare at that distance. At that early epoch, the expectation is that there are not enough galaxies behind the cluster bright enough to be seen, even if they were 'lensed' or distorted by the cluster. The other problem is that galaxy clusters become less massive the farther back in time you go. So it's more difficult to find a cluster with enough mass to be a good lens for gravitationally bending the light from a distant galaxy."

Galaxy clusters are collections of hundreds to thousands of galaxies bound together by gravity. They are the most massive structures in our universe. Astronomers frequently study galaxy clusters to look for faraway, magnified galaxies behind them that would otherwise be too dim to see with telescopes. Many such gravitationally lensed galaxies have been found behind galaxy clusters closer to Earth.

The surprise in this Hubble observation is spotting a galaxy lensed by an extremely distant cluster. Dubbed IDCS J1426.5+3508, the cluster is the most massive found at that epoch, weighing as much as 500 trillion suns. It is 5 to 10 times larger than other clusters found at such an early time in the universe's history. The team spotted the cluster in a search using NASA's Spitzer Space Telescope in combination with archival optical images taken as part of the National Optical Astronomy Observatory's Deep Wide Field Survey at the Kitt Peak National Observatory, Tucson, Ariz. The combined images allowed them to see the cluster as a grouping of very red galaxies, indicating they are far away.

This unique system constitutes the most distant cluster known to "host" a giant gravitationally lensed arc. Finding this ancient gravitational arc may yield insight into how, during the first moments after the big bang, conditions were set up for the growth of hefty clusters in the early universe.

The arc was spotted in optical images of the cluster taken in 2010 by Hubble's Advanced Camera for Surveys. The infrared capabilities of Hubble's Wide Field Camera 3 (WFC3) helped provide a precise distance, confirming it to be one of the farthest clusters yet discovered.

Once the astronomers determined the cluster's distance, they used Hubble, the Combined Array for Research in Millimeter-wave Astronomy (CARMA) radio telescope, and NASA's Chandra X-ray Observatory to independently show that the galactic grouping is extremely massive.

CARMA helped the astronomers determine the cluster's mass by measuring how primordial light from the big bang was affected as it passed through the extremely hot, tenuous gas that permeates the grouping. The astronomers then used the WFC3 observations to map the cluster's mass by calculating how much cluster mass was needed to produce the gravitational arc. Chandra data, which revealed the cluster's brightness in X-rays, was also used to measure the cluster's mass.

"The chance of finding such a gigantic cluster so early in the universe was less than one percent in the small area we surveyed," said team member Mark Brodwin of the University of Missouri-Kansas City. "It shares an evolutionary path with some of the most massive clusters we see today, including the Coma Cluster and the recently discovered El Gordo Cluster."

An analysis of the arc revealed that the lensed object is a star-forming galaxy that existed 10 billion to 13 billion years ago. The team hopes to use Hubble again to obtain a more accurate distance to the lensed galaxy.

Gonzalez has considered several possible explanations for the arc.

One explanation is that distant galaxy clusters, unlike nearby clusters, have denser concentrations of galaxies at their cores, making them better magnifying glasses. However, even if the distant cores were denser, the added bulk still should not provide enough gravitational muscle to produce the giant arc seen in Gonzalez's observations, according to a statistical analysis.

Another possibility is that the initial microscopic fluctuations in matter made right after the big bang were different from those predicted by standard cosmological simulations, and therefore produced more massive clusters than expected.

"I'm not yet convinced by any of these explanations," Gonzalez said. "After all, we have found only one example. We really need to study more extremely massive galaxy clusters that existed between 8 billion and 10 billion years ago to see how many more gravitationally lensed objects we can find."

The team's results are described in three papers, which will appear in the July 10, 2012 issue of The Astrophysical Journal. Gonzalez is the first author on one of the papers; Brodwin, on another; and Adam Stanford of the University of California at Davis, on the third.

The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center in Greenbelt, Md., manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore, Md., conducts Hubble science operations. STScI is operated by the Association of Universities for Research in Astronomy, Inc., in Washington, D.C.

For images and more information about Hubble and this study, visit:
http://www.nasa.gov/hubblehttp://hubblesite.org/news/2012/19

Cheryl Gundy | EurekAlert!
Further information:
http://www.stsci.edu

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

Metallic nanoparticles will help to determine the percentage of volatile compounds

20.10.2017 | Materials Sciences

Shallow soils promote savannas in South America

20.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>