Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's Fermi probes 'dragons' of the gamma-ray sky

03.03.2010
One of the pleasures of perusing ancient maps is locating regions so poorly explored that mapmakers warned of dragons and sea monsters.

Now, astronomers using NASA's Fermi Gamma-ray Space Telescope find themselves in the same situation as cartographers of old. A new study of the ever-present fog of gamma rays from sources outside our galaxy shows that less than a third of the emission arises from what astronomers once considered the most likely suspects -- black-hole-powered jets from active galaxies.

"Active galaxies can explain less than 30 percent of the extragalactic gamma-ray background Fermi sees," said Marco Ajello, an astrophysicist at the Kavli Institute for Particle Astrophysics and Cosmology (KIPAC), jointly located at SLAC National Accelerator Laboratory and Stanford University, Calif. "That leaves a lot of room for scientific discovery as we puzzle out what else may be responsible."

Ajello presented his findings Tuesday at a meeting of the American Astronomical Society's High-Energy Astrophysics Division in Waikoloa, Hawaii.

The sky glows in gamma rays even far away from bright sources, such as pulsars and gas clouds within our own Milky Way galaxy or the most luminous active galaxies. According to the conventional explanation, this background glow represents the accumulated emission of a vast number of active galaxies that are simply too faint and too distant to be resolved as discrete gamma-ray sources.

"Thanks to Fermi, we now know for certain that this is not the case," Ajello said. A paper on the findings has been submitted to The Astrophysical Journal.

Active galaxies possess central black holes containing millions to billions of times the sun's mass. As matter falls toward the black hole, some of it becomes redirected into jets of particles traveling near the speed of light.

These particles can produce gamma rays in two different ways. When one strikes a photon of visible or infrared light, the photon can gain energy and become a gamma ray. If one of the jet's particles strikes the nucleus of a gas atom, the collision can briefly create a particle called a pion, which then rapidly decays into a pair of gamma rays.

Launched on June 11, 2008, the Fermi Gamma-ray Space Telescope is continually mapping the gamma-ray sky. The mission is a partnership between astrophysics and particle physics, developed in collaboration with NASA and the U.S. Department of Energy and including important contributions from academic institutions and partners in France, Germany, Italy, Japan, Sweden, and the U.S.

The team analyzed data acquired by Fermi's Large Area Telescope (LAT) during the observatory's initial year in space. The first challenge was eliminating emissions from our own galaxy.

"The extragalactic background is very faint, and it's easily confused with the bright emission from the Milky Way," said Markus Ackermann, another member of the Fermi LAT team at KIPAC who led the measurement study. "We have done a very careful job in separating the two components to determine the background's absolute level."

A separate paper describing the background measurement will appear in the March 12 issue of the journal Physical Review Letters.

Ajello and his colleagues then compared emissions from active galaxies that Fermi detected directly against the number needed to produce the observed extragalactic background. Between energies of 0.1 and 100 billion electron volts (GeV) -- or from about 100 million to 30 billion times the energy of visible light -- active galaxies turn out to be only minor players.

So, what else may contribute to the extragalactic gamma-ray background? "Particle acceleration occurring in normal star-forming galaxies is a strong contender," Ackermann explained. "So is particle acceleration during the final assembly of the large-scale structure we observe today, for example, where clusters of galaxies are merging together."

And there's always dark matter, the mysterious substance that neither produces nor obscures light but whose gravity corrals normal matter. "Dark matter may be a type of as-yet-unknown subatomic particle. If that's true, dark matter particles may interact with each other in a way that produces gamma rays," Ajello added.

Improved analysis and extra sky exposure will enable the Fermi team to address these potential contributions. For now, though, the best that can be said about the extragalactic gamma-ray background is: Here, there be dragons.

Related Links:

NASA's Fermi Telescope Detects Gamma-Rays from Distant "Star Factories"
www.nasa.gov/mission_pages/GLAST/news/star_factories
NASA's Fermi Finds Gamma-ray Galaxy Surprises
www.nasa.gov/mission_pages/GLAST/news/galaxy_surprise
Active Galaxies Flare and Fade in Fermi Telescope All-Sky Movie
www.nasa.gov/mission_pages/GLAST/news/flare_fade
NASA's Fermi Mission, Namibia's HESS Telescopes Explore a Blazar
www.nasa.gov/mission_pages/GLAST/news/index

Francis Reddy | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Physics and Astronomy:

nachricht New material for splitting water
19.06.2018 | American Institute of Physics

nachricht Carbon nanotube optics provide optical-based quantum cryptography and quantum computing
19.06.2018 | DOE/Los Alamos National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>