Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Nano, photonic research gets boost from new 3-D visualization technology

For the first time X-ray scientists have combined high-resolution imaging with 3-D viewing of the surface layer of material using X-ray vision in a way that does not damage the sample.

This new technique expands the range of X-ray research possible for biology and many aspects of nanotechnology, particularly nanofilms, photonics, and micro- and nano-electronics. This new technique also reduces "guesswork" by eliminating the need for modeling-dependent structural simulation often used in X-ray analysis.

Scientists from the Advanced Photon Source and Center for Nanoscale Materials at the U.S. Department of Energy's (DOE) Argonne National Laboratory have blended the advantages of 3-D surface viewing from grazing-incident geometry scattering with the high-resolution capabilities of lensless X-ray coherent diffraction imaging (CDI). The new technique, an adaptation of existing detector technology, is expected to work at all X-ray light sources.

"This is the future of how we will visualize structure of surfaces and interface structures in materials science with X-rays," said Argonne scientist Jin Wang, the lead author of "Three-Dimensional Coherent X-ray Surface Scattering Imaging near Total External Reflection" published on-line August 12, 2012, in the journal Nature Photonics.

By adjusting the angle with which the X-rays scatter off the sample, Wang and fellow Argonne scientists brought the 3-D power of the new imaging technique to the surface layers of the sample. In nanotechnology, most of the atomic interactions that control the functionality and efficiency of a product, such as a semiconductor or self-assembled nanostructure, occur at or just below the surface. Without a direct 3-D viewing capability, scientists have to rely on models rather than direct measurement to estimate a surface structure's thickness and form, which weakens confidence in the estimate's accuracy.

Using grazing-incidence geometry, rather than traditional CDI transmission geometry, scientists eliminated the need for modeling by using the scattering pattern to directly reconstruct the image in three dimensions.

Conventional X-ray imaging techniques allow for 3-D structural rendering, but they have lower image resolution and, therefore, greater uncertainty. Plus, in some cases, the X-rays' intensity destroys the sample. This new APS-designed technique potentially can image a sample with a single X-ray shot, making it non-destructive, a desirable quality for research on biological cells and features formed by organic materials.

Another benefit is the ability to expand CDI viewing from the nanometer to the millimeter scale when the X-ray beamline impinges on the sample at a glancing angle. This innovation allows scientists to relate the behavior of a bundle of atoms or molecules to that of an entire device. This area—the mesoscale, between nanoresearch and applied technology—has been a particularly difficult area for scientists to access. In nanotechnology, this area is thought to hold promise for making stronger, more flexible and more efficient materials. In biology, it connects intercellular behavior with the activity of individual cells and the larger organism.

"Hopefully this technique will be applied to research in biology, microelectronics and photonics" said Tao Sun, a postdoctoral research fellow working at the APS and the first author on the research. "This technique holds great promise because the resolution we can reach is only limited by wavelength, a fraction of a nanometer. So the APS upgrade and other advances in light source and detector technology will easily provide even higher-resolution images than we have achieved in this work."

The Advanced Photon Source at Argonne National Laboratory is one of five national synchrotron radiation light sources supported by the U.S. Department of Energy's Office of Science to carry out applied and basic research to understand, predict, and ultimately control matter and energy at the electronic, atomic, and molecular levels, provide the foundations for new energy technologies, and support DOE missions in energy, environment, and national security. To learn more about the Office of Science X-ray user facilities, visit

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit

Tona Kunz | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

nachricht Light-driven atomic rotations excite magnetic waves
24.10.2016 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>