Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nano, photonic research gets boost from new 3-D visualization technology

14.08.2012
For the first time X-ray scientists have combined high-resolution imaging with 3-D viewing of the surface layer of material using X-ray vision in a way that does not damage the sample.

This new technique expands the range of X-ray research possible for biology and many aspects of nanotechnology, particularly nanofilms, photonics, and micro- and nano-electronics. This new technique also reduces "guesswork" by eliminating the need for modeling-dependent structural simulation often used in X-ray analysis.

Scientists from the Advanced Photon Source and Center for Nanoscale Materials at the U.S. Department of Energy's (DOE) Argonne National Laboratory have blended the advantages of 3-D surface viewing from grazing-incident geometry scattering with the high-resolution capabilities of lensless X-ray coherent diffraction imaging (CDI). The new technique, an adaptation of existing detector technology, is expected to work at all X-ray light sources.

"This is the future of how we will visualize structure of surfaces and interface structures in materials science with X-rays," said Argonne scientist Jin Wang, the lead author of "Three-Dimensional Coherent X-ray Surface Scattering Imaging near Total External Reflection" published on-line August 12, 2012, in the journal Nature Photonics.

By adjusting the angle with which the X-rays scatter off the sample, Wang and fellow Argonne scientists brought the 3-D power of the new imaging technique to the surface layers of the sample. In nanotechnology, most of the atomic interactions that control the functionality and efficiency of a product, such as a semiconductor or self-assembled nanostructure, occur at or just below the surface. Without a direct 3-D viewing capability, scientists have to rely on models rather than direct measurement to estimate a surface structure's thickness and form, which weakens confidence in the estimate's accuracy.

Using grazing-incidence geometry, rather than traditional CDI transmission geometry, scientists eliminated the need for modeling by using the scattering pattern to directly reconstruct the image in three dimensions.

Conventional X-ray imaging techniques allow for 3-D structural rendering, but they have lower image resolution and, therefore, greater uncertainty. Plus, in some cases, the X-rays' intensity destroys the sample. This new APS-designed technique potentially can image a sample with a single X-ray shot, making it non-destructive, a desirable quality for research on biological cells and features formed by organic materials.

Another benefit is the ability to expand CDI viewing from the nanometer to the millimeter scale when the X-ray beamline impinges on the sample at a glancing angle. This innovation allows scientists to relate the behavior of a bundle of atoms or molecules to that of an entire device. This area—the mesoscale, between nanoresearch and applied technology—has been a particularly difficult area for scientists to access. In nanotechnology, this area is thought to hold promise for making stronger, more flexible and more efficient materials. In biology, it connects intercellular behavior with the activity of individual cells and the larger organism.

"Hopefully this technique will be applied to research in biology, microelectronics and photonics" said Tao Sun, a postdoctoral research fellow working at the APS and the first author on the research. "This technique holds great promise because the resolution we can reach is only limited by wavelength, a fraction of a nanometer. So the APS upgrade and other advances in light source and detector technology will easily provide even higher-resolution images than we have achieved in this work."

The Advanced Photon Source at Argonne National Laboratory is one of five national synchrotron radiation light sources supported by the U.S. Department of Energy's Office of Science to carry out applied and basic research to understand, predict, and ultimately control matter and energy at the electronic, atomic, and molecular levels, provide the foundations for new energy technologies, and support DOE missions in energy, environment, and national security. To learn more about the Office of Science X-ray user facilities, visit http://science.energy.gov/user-facilities/basic-energy-sciences/.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Tona Kunz | EurekAlert!
Further information:
http://www.anl.gov
http://science.energy.gov

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>