Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mixing in star-forming clouds explains why sibling stars look alike

01.09.2014

The chemical uniformity of stars in the same cluster is the result of turbulent mixing in the clouds of gas where star formation occurs, according to a study by astrophysicists at the University of California, Santa Cruz. Their results, published August 31 in Nature, show that even stars that don't stay together in a cluster will share a chemical fingerprint with their siblings which can be used to trace them to the same birthplace.

"We can see that stars that are part of the same star cluster today are chemically identical, but we had no good reason to think that this would also be true of stars that were born together and then dispersed immediately rather than forming a long-lived cluster," said Mark Krumholz, professor of astronomy and astrophysics at UC Santa Cruz.


This computer simulation shows the collision of two streams of interstellar gas, leading to gravitational collapse of the gas and the formation of a star cluster at the center. The left side shows the density of interstellar gas (redder indicates higher density), and the right side shows the two "tracer dyes" added to show how the gas from the two streams mixes together during the collapse. Circles indicate stars.

Credit: Y. Feng and M. Krumholz

Our sun and its siblings, for example, probably went their own ways within a few million years after they were born, Krumholz said. The new study suggests that astronomers could potentially find the sun's long-lost siblings even if they are now on the opposite side of the galaxy.

Krumholz and UC Santa Cruz graduate student Yi Feng used supercomputers to simulate two streams of interstellar gas coming together to form a cloud that, over the course of a few million years, collapses under its own gravity to make a cluster of stars. Studies of interstellar gas show much greater variation in chemical abundances than is seen among stars within the same open star cluster. To represent this variation, the researchers added "tracer dyes" to the two gas streams in the simulations. The results showed extreme turbulence as the two streams came together, and this turbulence effectively mixed together the tracer dyes.

"We put red dye in one stream and blue dye in the other, and by the time the cloud started to collapse and form stars, everything was purple. The resulting stars were purple as well," Krumholz said. "This explains why stars that are born together wind up having the same abundances: as the cloud that forms them is assembled, it gets thoroughly mixed. This was actually a bit of a surprise. I didn't expect the turbulence to be as violent as it was, so I didn't expect the mixing to be as rapid or efficient. I thought we'd get some blue stars and some red stars, instead of getting all purple stars."

The simulations also showed that the mixing happens very fast, before much of the gas has turned into stars. This is encouraging for the prospects of finding the sun's siblings, because the distinguishing characteristic of stellar families that don't stay together is that they probably disperse before much of their parent cloud has been converted to stars. If the mixing didn't happen quickly enough, then the chemical uniformity of star clusters would be the exception rather than the rule. Instead, the simulations indicate that even clouds that don't turn much of their gas into stars produce stars with nearly identical chemical signatures.

"The idea of finding the siblings of the sun through chemical tagging is not new, but no one had any idea if it would work," Krumholz said. "The underlying problem was that we didn't really know why stars in clusters are chemically homogeneous, and so we couldn't make any sensible predictions about what would happen in the environment where the Sun formed, which must have been quite different from the environments that give rise to long-lived star clusters. This study puts the idea on much firmer footing and will hopefully spur greater efforts toward making use of this technique."

###

This research was supported by the National Science Foundation and NASA.

Tim Stephens | Eurek Alert!

Further reports about: Krumholz expect identical interstellar siblings technique

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>