Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


For new microscope images, less is more

When people email photos, they sometimes compress the images, removing redundant information and thus reducing the file size.

Compression is generally thought of as something to do to data after it has been collected, but mathematicians have recently figured out a way to use similar principles to drastically reduce the amount of data that needs to be gathered in the first place.

Now scientists from the University of Houston and Rice University in Houston, Texas have utilized this new theory, called compression sensing, to build a microscope that can make images of molecular vibrations with higher resolution and in less time than conventional methods. The microscope provides chemists with a powerful new experimental tool.

The main concept behind compressive sensing is something called "sparsity." If a signal is "sparse," the most important information is concentrated in select parts of the signal, with the rest containing redundant information that can be mathematically represented by zero or near-zeros numbers. The sparse signal that the Texas researchers were looking at came from a sum frequency generation (SFG) microscope, which shines two different frequency lasers at a surface and then measures the return signal to gather information about the vibration and orientation of the molecules at the surface boundary.

Traditional SFG microscopes scan a sample by systematically moving across it, but the resolution of these traditional scans is limited because as resolution increases the strength of the signal decreases. Instead of systematically scanning the boundary, the compressive sensing microscope gathered a set of pseudo-randomly positioned sampling points. If the important information was captured in the sample, then a series of mathematical steps could be used to construct the entire image. The researchers tested their microscope by imaging stripes of gold deposited on a silicon background and then coated with a chemical called octadecanethiol. The device sensed the stretching of the carbon-hydrogen bonds in the octadecanethiol layer and created images with 16 times more pixel density than was possible with the traditional scanning techniques. The new microscope could find applications in biomolecular imaging and the scientific study of interfaces.

Article: "Sum Frequency Generation-Compressive Sensing Microscope" is accepted for publication in the Journal of Chemical Physics.

Authors: Xiaojun Cai (1), Bian Hu (1), Ting Sun (2), Kevin F. Kelly (2), and Steven Baldelli (1).

(1) Department of Chemistry, University of Houston
(2) Department of Electrical and Computer Engineering, Rice University

Catherine Meyers | EurekAlert!
Further information:

Further reports about: email photos microscope images molecular vibrations

More articles from Physics and Astronomy:

nachricht Gamma ray camera offers new view on ultra-high energy electrons in plasma
28.10.2016 | American Physical Society

nachricht Scientists measure how ions bombard fusion device walls
28.10.2016 | American Physical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>