Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Meteorite search update

28.11.2008
10-ton rock responsible for fireball in Western Canada last week

Investigation of the fireball that lit up the skies of Alberta and Saskatchewan on November 20 has determined that an asteroid fragment weighing approximately 10 tonnes entered the Earth's atmosphere over the prairie provinces last Thursday evening.

And University of Calgary researcher Alan Hildebrand has outlined a region in western Saskatchewan where chunks of the desk-sized space rock are expected to be found.

The fireball first appeared approximately 80 kilometres above and just east of the border city of Lloydminster, Alberta/Saskatchewan, and traveled SSE towards the Battle River valley fragmenting spectacularly in a series of explosions. The fireball penetrated the atmosphere at a steep angle of approximately 60 degrees from the horizontal and lasted about five seconds from 17:26:40 to 17:26:45 MST with the largest explosion at 17:26:44. The fireball was recorded on all-sky and security cameras scattered across Saskatchewan and Alberta in addition to being witnessed by tens of thousands of people who saw it streak across the sky, saw its arc- welding blue flash, or heard the subsequent explosions.

"Firstly, we are enormously appreciative of all the people who have volunteered information about the fireball. The public response to this fireball has been the largest that we have ever had in Canada." said Hildebrand, Canada Research Chair in Planetary Science and Coordinator of the Canadian Fireball Reporting Centre at the University of Calgary. Hildebrand said the fireball was like a billion-watt lightbulb shining in the sky, turning night into day with a bluish white light. It illuminated the ground for several hundred kilometers in all directions including as far south as Vauxhall, Alberta.

"Thanks to everyone's help we are now beginning to delineate the trajectory of the fireball, so that its prefall orbit can be determined. We have also outlined an area where its meteorites may have fallen, although we will have more precise predictions to come," Hildebrand added.

The asteroid fragment is now known to have weighed approximately 10 tonnes when it entered the Earth's atmosphere from an energy estimate derived from infrasound records by Dr. Peter Brown, Canada Research Chair in Meteor Physics at the University of Western Ontario. Infrasound is very low frequency sound produced by explosions that can travel thousands of kilometers.

"At least half a dozen infrasound stations ranging from Greenland to Utah, including Canada's Lac Du Bonnett, Manitoba and Elgin Field, Ontario stations, recorded energy from the fireball's explosions. The indicated energy is approximately one third of a kiloton of TNT," Brown said.

Dr. Brown also says that a fireball this size only occurs over Canada once every five years on average. About ten fireballs of this size occur somewhere over the Earth each year.

Dr. Hildebrand spent the weekend in the field interviewing witnesses and searching for security camera videos.

"We are now trying to get all the transient information about the fireball before it is lost. Many motels and gas stations only keep their security recordings for one week or less, so we urge everyone to check their systems to see if they recorded the fireball or the moving shadows that it cast," Hildebrand said. "Three gas stations and motels in Lloydminster, Lashburn and Maidstone are known to have records, but dozens of other businesses in the area probably have the fireball or its shadows recorded."

If fireball images are found, he suggests immediately saving a copy and contacting him. "With the security camera footage we can compute the fireball's trajectory in the sky to calculate the prefall orbit. Meteorites have only ever been recovered from known orbits nine times previously and we want to make that ten. "

Hildebrand estimates that hundreds of meteorites larger than 50 grams could have landed since the rock was large and its entry velocity was lower than average. The object's speed is calculated to be only roughly 14 km/sec when it entered the atmosphere versus the average of around 20 km/sec.

"We are now starting to reasonably constrain where the meteorites will have fallen. Many witnesses reported seeing a cluster of red fragments continuing downwards in the sky after the fireball exploded. These represent the rocks slowing down that will eventually fall to the ground as meteorites," Hildebrand said. "An outstanding thing about this fireball is that so many red fragments were seen and that they traveled so low to the ground before becoming invisible in the darkness."

The projected area of fall lies within Saskatchewan's Manitou Lake Rural Municipality north of Marsden and Neilburg, and just south of the Battle River in an area that is mostly cleared for cultivation.

"Several of the nearby eye witnesses describe sounds that could actually be from the meteorites falling through the sky, but we don't know that for sure yet. The eye witness descriptions are remarkably consistent with each other as to the location," Hildebrand said.

The remarkable consistency of the eyewitness accounts is probably partly explained by the dramatic dust clouds that marked the fireball's path. These clouds remained in the sky without much distortion for several minutes. From the fireball's characteristics Hildebrand thinks that it was a relatively strong rock and many rocks the size of a football or bigger are expected in addition to the more numerous small ones. Larger meteorites will have plunged into the ground if at all soft, making small pits with the meteorites at the bottom. Meteorites of common asteroids will have a dark gray or black coating covering their dimpled surface, be denser than the average rock, and will weakly attract a magnet, but other types of meteorites are possible.

The meteorites are expected to be scattered across a strewnfield approximately eight km long and three km wide with the larger stones to the southeast. Noting that they have a substantial commercial value, Hildebrand also advises that meteorites are the property of the landowner where they fall.

Hildebrand and Brown are both members of the Small Bodies Discipline Working Group that is funded by the Canadian Space Agency. Dr. Martin Beech at the University of Regina chairs this working group.

Hildebrand has returned to the field to continue gathering data and will be available only for pre-arranged phone interviews. Both Brown and Beech are available for comment at the contact information below.

Grady Semmens | EurekAlert!
Further information:
http://www.ucalgary.ca

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>