Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Merging galaxies and droplets of starbirth

11.07.2014

Hubble snaps a violent galactic merger and chain of star formation

The Universe is filled with objects springing to life, evolving and dying explosive deaths. This new image from the NASA/ESA Hubble Space Telescope captures a snapshot of some of this cosmic movement. Embedded within the egg-shaped blue ring at the centre of the frame are two galaxies. These galaxies have been found to be merging into one and a "chain" of young stellar superclusters are seen winding around the galaxies’ nuclei.


Droplets of star formation and two merging galaxies in SDSS J1531+3414

At the centre of this image lie two elliptical galaxies, part of a galaxy cluster known as [HGO2008]SDSS J1531+3414, which have strayed into each other’s paths. While this region has been observed before, this new Hubble picture shows clearly for the first time that the pair are two separate objects. However, they will not be able to hold on to their separate identities much longer, as they are in the process of merging into one [1].

Finding two elliptical galaxies merging is rare, but it is even rarer to find a merger between ellipticals rich enough in gas to induce star formation. Galaxies in clusters are generally thought to have been deprived of their gaseous contents; a process that Hubble has recently seen in action. Yet, in this image, not only have two elliptical galaxies been caught merging but their newborn stellar population is also a rare breed.

The stellar infants — thought to be a result of the merger — are part of what is known as "beads on a string" star formation. This type of formation appears as a knotted rope of gaseous filaments with bright patches of new stars and the process stems from the same fundamental physics which causes rain to fall in droplets, rather than as a continuous column [2].

Nineteen compact clumps of young stars make up the length of this "string", woven together with narrow filaments of hydrogen gas. The star formation spans 100,000 light years, which is about the size of our galaxy, the Milky Way. The strand is dwarfed, however, by the ancient, giant merging galaxies that it inhabits. They are about 330,000 light years across, nearly three times larger than our own galaxy. This is typical for galaxies at the centre of massive clusters, as they tend to be the largest galaxies in the Universe.

The electric blue arcs making up the spectacular egg-like shape framing these objects are a result of the galaxy cluster’s immense gravity. The gravity warps the space around it and creates bizarre patterns using light from more distant galaxies.

Astronomers have ruled out the possibility that the blue strand is also just a lensed mirage from distant galaxies and now their challenge is to understand the origin of the cold gas that is fuelling the growth of the stellar superclusters. Was the gas already in the merging galaxies? Did it condense like rain from the rapidly cooling X-ray plasma surrounding the two galaxies? Or, did it cool out of a shock in the X-ray gas as the ten-million-degree gaseous halos surrounding the galaxies collided together? Future observations with both space- and ground-based observatories are needed to unravel this mystery.

Notes

[1] Mergers occur when two or more galaxies stray too close to one another, causing them to coalesce into one large body (heic0912). The violent process strips gas, dust and stars away from the galaxies involved and can alter their appearances dramatically, forming large gaseous tails, glowing rings, and warped galactic discs (heic0810).

[2] The merging system is forming stellar superclusters in equally spaced beads just like evenly spaced drops from a tap. The only real difference is that surface tension in the falling water is analogous to gravity in the context of the star-forming chain. This is a wonderful demonstration that the fundamental laws of physics really are scale-invariant - we see the same physics in rain drops that we do on 100 000 light-year scales.

More information

The Hubble Space Telescope is a project of international cooperation between ESA and NASA.

Image credit: NASA, ESA/Hubble and G. Tremblay (European Southern Observatory)

Acknowledgement: M. Gladders & M. Florian (University of Chicago, USA), S. Baum, C. O'Dea & K. Cooke (Rochester Institute of Technology, USA), M. Bayliss (Harvard-Smithsonian Center for Astrophysics, USA), H. Dahle (University of Oslo, Norway), T. Davis (European Southern Observatory), J. Rigby (NASA Goddard Space Flight Center, USA), K. Sharon (University of Michigan, USA), E. Soto (The Catholic University of America, USA) and E. Wuyts (Max-Planck-Institute for Extraterrestrial Physics, Germany).

Contacts

Georgia Bladon
ESA/Hubble, Public Information Officer
Garching bei München, Germany
Tel: +44 7816 291 261
Email: gbladon@partner.eso.org

Georgia Bladon | ESA/Hubble Media Newsletter
Further information:
http://www.spacetelescope.org/news/heic1414/

Further reports about: ESA Hubble NASA Observatory clusters droplets elliptical galaxies filaments galaxies gravity physics

More articles from Physics and Astronomy:

nachricht Winds a quarter the speed of light spotted leaving mysterious binary systems
29.04.2016 | University of Cambridge

nachricht Possible Extragalactic Source of High-Energy Neutrinos
28.04.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

Im Focus: New world record for fullerene-free polymer solar cells

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences (CAS). This work is about avoiding costly and unstable fullerenes.

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences...

Im Focus: Ultra-thin glass is up and coming

As one of the leading R&D partners in the development of surface technologies and organic electronics, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP will be exhibiting its recent achievements in vacuum coating of ultra-thin glass at SVC TechCon 2016 (Booth 846), taking place in Indianapolis / USA from May 9 – 13.

Fraunhofer FEP is an experienced partner for technological developments, known for testing the limits of new materials and for optimization of those materials...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Winds a quarter the speed of light spotted leaving mysterious binary systems

29.04.2016 | Physics and Astronomy

Fiber optic biosensor-integrated microfluidic chip to detect glucose levels

29.04.2016 | Health and Medicine

A cell senses its own curves: New research from the MBL Whitman Center

29.04.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>