Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Making Quantum Connections


The speed of information in a spin network

In quantum mechanics, interactions between particles can give rise to entanglement, which is a strange type of connection that could never be described by a non-quantum, classical theory. These connections, called quantum correlations, are present in entangled systems even if the objects are not physically linked (with wires, for example). Entanglement is at the heart of what distinguishes purely quantum systems from classical ones; it is why they are potentially useful, but it sometimes makes them very difficult to understand.

Image credit: S. Kelley/JQI

(1) Using a laser, the ion spin chain is optically pumped to a spin state that is uncorrelated with respect to the spin-spin interactions. (2) The system is suddenly perturbed by lasers, turning on global spin-spin interaction. (3) After the spin system evolves for various lengths of time (t1…tn), the spin state of each ion is captured with a CCD camera. The researchers can directly observe the spin-spin correlations propagating across the ion chain.

Physicists are pretty adept at controlling quantum systems and even making certain entangled states. Now JQI researchers*, led by theorist Alexey Gorshkov and experimentalist Christopher Monroe, are putting these skills to work to explore the dynamics of correlated quantum systems. What does it mean for objects to interact locally versus globally? How do local and global interactions translate into larger, increasingly connected networks? How fast can certain entanglement patterns form?

These are the kinds of questions that the Monroe and Gorshkov teams are asking. Their recent results investigating how information flows through a quantum many-body system are published this week in the journal Nature (10.1038/nature13450), and in a second paper to appear in Physical Review Letters.

Researchers can engineer a rich selection of interactions in ultracold atom experiments, allowing them to explore the behavior of complex and massively intertwined quantum systems. In the experimental work from Monroe’s group, physicists examined how quickly quantum connections formed in a crystal of eleven ytterbium ions confined in an electromagnetic trap.

The researchers used laser beams to implement interactions between the ions. Under these conditions, the system is described by certain types of ‘spin’ models, which are a vital mathematical representation of numerous physical phenomena including magnetism. Here, each atomic ion has isolated internal energy levels that represent the various states of spin.

In the presence of carefully chosen laser beams the ion spins can influence their neighbors, both near and far. In fact, tuning the strength and form of this spin-spin interaction is a key feature of the design. In Monroe's lab, physicists can study different types of correlated states within a single pristine quantum environment.

To see dynamics the researchers initially prepared the ion spin system in an uncorrelated state. Next, they abruptly turned on a global spin-spin interaction. The system is effectively pushed off-balance by such a fast change and the spins react, evolving under the new conditions.The team took snapshots of the ion spins at different times and observed the speed at which quantum correlations grew.

The spin models themselves do not have an explicitly built-in limit on how fast such information can propagate. The ultimate limit, in both classical and quantum systems, is given by the speed of light. However, decades ago, physicists showed that a slower information speed limit emerges due to some types of spin-spin interactions, similar to sound propagation in mechanical systems.

While the limits are better known in the case where spins predominantly influence their closest neighbors, calculating constraints on information propagation in the presence of more extended interactions remains challenging. Intuitively, the more an object interacts with other distant objects, the faster the correlations between distant regions of a network should form.

Indeed, the experimental group observes that long-range interactions provide a comparative speed-up for sending information across the ion-spin crystal. In the paper appearing in Physical Review Letters, Gorshkov’s team improves existing theory to much more accurately predict the speed limits for correlation formation, in the presence of interactions ranging from nearest-neighbor to long-range.

Verifying and forming a complete understanding of quantum information propagation is certainly not the end of the story; this also has many profound implications for our understanding of quantum systems more generally. For example, the growth of entanglement, which is a form of information that must obey the bounds described above, is intimately related to the difficulty of modeling quantum systems on a computer.

Dr. Michael Foss-Feig explains, “From a theorist’s perspective, the experiments are cool because if you want to do something with a quantum simulator that actually pushes beyond what calculations can tell you, doing dynamics with long-range interacting systems is expected to be a pretty good way to do that. In this case, entanglement can grow to a point that our methods for calculating things about a many-body system break down.”

Theorist Dr. Zhexuan Gong states that in the context of both works, “We are trying to put bounds on how fast correlation and entanglement can form in a generic many-body system. These bounds are very useful because with long-range interactions, our mathematical tools and state-of-the-art computers can hardly succeed at predicting the properties of the system.

We would then need to either use these theoretical bounds or a laboratory quantum simulator to tell us what interesting properties a large and complicated network of spins possess. These bounds will also serve as a guideline on what interaction pattern one should achieve experimentally to greatly speed up information propagation and entanglement generation, both key for building a fast quantum computer or a fast quantum network.”

From the experimental side, Dr. Phil Richerme gives his perspective, “We are trying to build the world’s best experimental platform for evolving the Schrodinger equation [math that describes how properties of a quantum system change in time]. We have this ability to set up the system in a known state and turn the crank and let it evolve and then make measurements at the end. For system sizes not much larger than what we have here, doing this becomes impossible for a conventional computer.”

This news item was written by E. Edwards/JQI.

Emily Edwards | Eurek Alert!
Further information:

More articles from Physics and Astronomy:

nachricht Listening to the Extragalactic Radio
13.10.2015 | Max-Planck-Institut für Radioastronomie

nachricht Scientists paint quantum electronics with beams of light
12.10.2015 | University of Chicago

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Secure data transfer thanks to a single photon

Physicists of TU Berlin and mathematicians of MATHEON are so successful that even the prestigious journal “Nature Communications” reported on their project.

Security in data transfer is an important issue, and not only since the NSA scandal. Sometimes, however, the need for speed conflicts to a certain degree with...

Im Focus: A Light Touch May Help Animals and Robots Move on Sand and Snow

Having a light touch can make a hefty difference in how well animals and robots move across challenging granular surfaces such as snow, sand and leaf litter. Research reported October 9 in the journal Bioinspiration & Biomimetics shows how the design of appendages – whether legs or wheels – affects the ability of both robots and animals to cross weak and flowing surfaces.

Using an air fluidized bed trackway filled with poppy seeds or glass spheres, researchers at the Georgia Institute of Technology systematically varied the...

Im Focus: Reliable in-line inspections of high-strength automotive body parts within seconds

Nondestructive material testing (NDT) is a fast and effective way to analyze the quality of a product during the manufacturing process. Because defective materials can lead to malfunctioning finished products, NDT is an essential quality assurance measure, especially in the manufacture of safety-critical components such as automotive B-pillars. NDT examines the quality without damaging the component or modifying the surface of the material. At this year's Blechexpo trade fair in Stuttgart, Fraunhofer IZFP will have an exhibit that demonstrates the nondestructive testing of high-strength automotive body parts using 3MA. The measurement results are available in a matter of seconds.

To minimize vehicle weight and fuel consumption while providing the highest level of crash safety, automotive bodies are reinforced with elements made from...

Im Focus: Kick-off for a new era of precision astronomy

The MICADO camera, a first light instrument for the European Extremely Large Telescope (E-ELT), has entered a new phase in the project: by agreeing to a Memorandum of Understanding, the partners in Germany, France, the Netherlands, Austria, and Italy, have all confirmed their participation. Following this milestone, the project's transition into its preliminary design phase was approved at a kick-off meeting held in Vienna. Two weeks earlier, on September 18, the consortium and the European Southern Observatory (ESO), which is building the telescope, have signed the corresponding collaboration agreement.

As the first dedicated camera for the E-ELT, MICADO will equip the giant telescope with a capability for diffraction-limited imaging at near-infrared...

Im Focus: Locusts at the wheel: University of Graz investigates collision detector inspired by insect eyes

Self-driving cars will be on our streets in the foreseeable future. In Graz, research is currently dedicated to an innovative driver assistance system that takes over control if there is a danger of collision. It was nature that inspired Dr Manfred Hartbauer from the Institute of Zoology at the University of Graz: in dangerous traffic situations, migratory locusts react around ten times faster than humans. Working together with an interdisciplinary team, Hartbauer is investigating an affordable collision detector that is equipped with artificial locust eyes and can recognise potential crashes in time, during both day and night.

Inspired by insects

All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

Smart clothing, mini-eyes, and a virtual twin – Artificial Intelligence at ICT 2015

13.10.2015 | Trade Fair News

Listening to the Extragalactic Radio

13.10.2015 | Physics and Astronomy

Penn study stops vision loss in late-stage canine X-linked retinitis pigmentosa

13.10.2015 | Health and Medicine

More VideoLinks >>>