Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What makes nanowires so attractive

14.07.2009
Chinese-German team clearly identifies semiconducting nanowires with intrinsic ferromagnetic characteristics / Publication comes out today in "Nature Nanotechnology"

For a Chinese-German research team the "force of attraction" of minute nanowires is not only based on their special scientific interests: Physicists of the Chinese University of Hongkong and the Friedrich Schiller University Jena were able to prove for the first time that cobalt doped nanowires made from zinc oxide have intrinsic ferromagnetic characteristics - and therefore in principle work like tiny bar magnets.

The scientists around Prof. Dr. Quan Li (Hong Kong) and Prof. Dr. Carsten Ronning (Jena) will publish the results of their research in the current online edition of the well renowned journal "Nature Nanotechnology".

For that Prof. Ronning and his Jena team used their know-how about the preparation of semiconductor nanostructures and their optical characteristics, and doped zinc oxide wires. These were then examined for their magnetic properties by the Chinese colleagues around Prof. Li - an acknowledged expert in the field of electron microscopy. The innovative combination of two analytical methods - transmission electron microscopy and electron magnetic chiral dichroism - is responsible for the surprising outcome. "We realized that cobalt doping gives intrinsic ferromagnetic properties while iron does not", comments Prof. Li. Further investigations must now clarify where these differences come from.

The production of magnetic semiconducting nanowires has so far been basic research, as Quan Li emphasizes. But medium term "we might be able to help push open the door to spintronics". "Spintronics" is a new field in semiconductor physics: While traditional semiconductor electronics is based on the electrons' electrical charge, spintronics additionally uses the spin, the angular momentum, of the electrons. "That momentum can occur in two directions resulting in a magnetic moment", explains Prof. Ronning.

This new development could bring real advantages: Common electronic components need 10.000 to 100.000 electrons for a single switching action. Semiconductor components switching only the spin of electrons need only one electron to transport the necessary information. "That means that spintronic semiconductors could switch much faster than common electronic components", says Quan Li. Furthermore they would need only a fraction of the energy.

The precondition for a further development of spintronics however is, that semiconductors with intrinsic ferromagnetic characteristics can be produced at all. Intense worldwide research has been conducted for about a decade - so far with moderate success: There has not been a method clearly proving intrinsic ferromagnetism so far. Thanks to the current results the physicists have taken the field an important step further.

The original publication Z. H. Zhang, Xuefeng Wang, J. B. Xu, S. Muller, C. Ronning & Quan Li. Evidence of intrinsic ferromagnetism in individual dilute magnetic semiconducting nanostructures can be found under: http://www.nature.com/doifinder/10.1038/nnano.2009.181

Contact:
Prof. Dr. Quan Li
Department of Physics, The Chinese University of Hong Kong
Phone: + (852) 2609 6323
Email: liquan[at]phy.cuhk.edu.hk
http://www.phy.cuhk.edu.hk/qli/
Prof. Dr. Carsten Ronning
Institute for Solid State Physics, Friedrich Schiller University Jena
Phone: + (49) 3641 947300
Email: carsten.ronning[at]uni-jena.de
http://www.nano.uni-jena.de/en

Dr. Ute Schönfelder | idw
Further information:
http://www.nano.uni-jena.de/en
http://www.phy.cuhk.edu.hk/qli/
http://www.nature.com/doifinder/10.1038/nnano.2009.181

More articles from Physics and Astronomy:

nachricht Pulses of electrons manipulate nanomagnets and store information
21.07.2017 | American Institute of Physics

nachricht Vortex photons from electrons in circular motion
21.07.2017 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>