Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New magnetic semiconductor material holds promise for 'spintronics'

11.09.2013
Researchers at North Carolina State University have created a new compound that can be integrated into silicon chips and is a dilute magnetic semiconductor – meaning that it could be used to make "spintronic" devices, which rely on magnetic force to operate, rather than electrical currents.

The researchers synthesized the new compound, strontium tin oxide (Sr3SnO), as an epitaxial thin film on a silicon chip. Epitaxial means the material is a single crystal. Because Sr3SnO is a dilute magnetic semiconductor, it could be used to create transistors that operate at room temperature based on magnetic fields, rather than electrical current.

"We're talking about cool transistors for use in spintronics," says Dr. Jay Narayan, John C. Fan Distinguished Professor of Materials Science and Engineering at NC State and senior author of a paper describing the work. "Spintronics" refers to technologies used in solid-state devices that take advantage of the inherent "spin" in electrons and their related magnetic momentum.

"There are other materials that are dilute magnetic semiconductors, but researchers have struggled to integrate those materials on a silicon substrate, which is essential for their use in multifunctional, smart devices," Narayan says. "We were able to synthesize this material as a single crystal on a silicon chip."

"This moves us closer to developing spin-based devices, or spintronics," says Dr. Justin Schwartz, co-author of the paper, Kobe Steel Distinguished Professor and Department Head of the Materials Science and Engineering Department at NC State. "And learning that this material has magnetic semiconductor properties was a happy surprise."

The researchers had set out to create a material that would be a topological insulator. In topological insulators the bulk of the material serves as an electrical insulator, but the surface can act as a highly conductive material – and these properties are not easily affected or destroyed by defects in the material. In effect, that means that a topological insulator material can be a conductor and its own insulator at the same time.

Two materials are known to be topological insulators – bismuth telluride and bismuth selenide. But theorists predicted that other materials may also have topological insulator properties. Sr3SnO is one of those theoretical materials, which is why the researchers synthesized it. However, while early tests are promising, the researchers are still testing the Sr3SnO to confirm whether it has all the characteristics of a topological insulator.

The paper, "Epitaxial integration of dilute magnetic semiconductor Sr3SnO with Si (001)," was published online Sept. 9 in Applied Physics Letters. Lead author of the paper is Y. F. Lee, a Ph.D. student at NC State. Co-authors include F. Wu and R. Kumar, both Ph.D. students at NC State, and Dr. Frank Hunte, an assistant professor at NC State. The work was supported, in part, by the National Science Foundation.

Matt Shipman | EurekAlert!
Further information:
http://www.ncsu.edu

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>