Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Low-cost carbon capture gets X-rayed

01.08.2012
Diamond Light Source is being used to improve low cost methods for carbon capture.

Scientists from the University of Leeds are using the UK’s national synchrotron to investigate the efficiency of calcium oxide (CaO) based materials as carbon dioxide (CO2) sorbents. Their results, published in the journal of Energy & Environmental Science, provide an explanation for one of the key mechanisms involved. This new knowledge will inform efforts to improve the efficiency of this economically viable method of carbon capture and storage.

Current techniques for post-combustion carbon capture filter out CO2 from a power plant’s flue gases as they travel up a chimney. The filter is a solvent that absorbs the CO2, before being heated, releasing water vapour and leaving behind the CO2. In pre-combustion, the CO2 is filtered out by use of a catalytic converter before the fossil fuel is burned and the CO2 is diluted by other flue gases. These methods can prevent 80% to 90% of a power plant’s carbon emissions from entering the atmosphere.

CaO based materials have a large range of applications including pre- and post-combustion carbon capture technologies and thermochemical fuel upgrading. They are low cost, high abundance, have a large sorption capacity and fast reaction rates during the chemical process. They capture CO2 in the temperature range 400-800 °C via the formation of calcium carbonate (CaCO3) which can be regenerated with subsequent release of CO2, ready for compression and storage.
However, after multiple capture and regeneration cycles, the materials’ capacity for capture decreases due to the loss of surface area through sintering, a process that fuses powders together to create a single solid object. Although the surface area can be restored through hydration, the material suffers a reduction in mechanical strength. If these problems can be overcome, CaO based materials could provide a low cost answer for carbon capture on a very large scale.

Led by Dr Valerie Dupont and Dr Tim Comyn from the University of Leeds’ Faculty of Engineering, the team carried out a series of experiments on Diamond’s High resolution powder diffraction beamline, I11, using intense X-rays to study the carbon capture and hydration process in CaO based materials on the nano-scale. Their observations suggest a mechanism for the interaction between CaO and water during hydration.

“We found that the stresses in the calcium hydroxide phase when bound to CaO were more than 20 times higher than its strength, leading to disintegration and the generation of nano-sized crystallites. Although the generation of a high surface area is a good thing, mechanical friability needs to be kept in check in order to achieve long term reliability for these systems. Our analysis provides an explanation of the enhanced capture/disintegration observed in CaO in the presence of steam. Now we understand this, the next step is to develop methods for improving the materials used, and apply the same techniques to other systems.”

Dr Tim Comyn, Faculty of Engineering, University of Leeds

CaO readily forms a shell of calcium hydroxide when exposed to water in the air (right). Due to differences in atomic congurations (top left) between the oxide and hydroxides, enormous strains develop due to the interface. These strains of 0.78% lead to stresses 20 times higher than the rupture strength of the hydroxide leading to rupture and the generation of nanoparticles.

Deconvolution of the data generated by Diamond (bottom left) allows the Leeds team to determine the size and strain in these layers, from the breadth of the peaks (the peaks from CaOH are far narrower than CaO). Conventional X-ray sources would have considerable peak overlap, making this type of analysis almost impossible.

Roger Molinder, an Engineering and Physical Sciences Research Council (EPSRC) funded PhD student on the project, describes, “Using the high resolution powder diffraction beamline at the Diamond synchrotron was key to this discovery; conventional X-ray sources such as those found at most Universities in the UK provide data with broad peaks, which do not make this sort of analysis possible. From a rigorous analysis of peak shapes arising from the data, we were able to determine the shape and size of the hydroxide phase, and determine the level of stress. Knowledge of these derived parameters is key to understanding the mechanism of sintering/disintegration.”

Concerns about global warming have prompted both national and international efforts to curb CO2 emissions. CaO based materials are a promising candidate for the removal of CO2 from flue gases at temperatures between 400 and 800 °C from processes such as fossil-fuel combustion. They are also being considered as a means to remove the CO2 that is generated as a result of thermochemical fuel upgrading with biomass sources, which are growing more and more popular as an alternative to fossil fuels. Using CaO based materials for carbon capture is just one of the ways to combat global warming. Since CaO based materials are low cost, there is an economic incentive to solve the problem of surface area loss to potentially turn this into a method for large scale CO2 capture. These recently published results are a promising step towards improving these low cost methods.

The accepted manuscript for ‘In-situ X-ray diffraction of CaO based CO2 sorbents’ was published online 9 July 2012 in Energy & Environmental Science. DOI:10.1039/C2EE21779A

Paula Gould | EurekAlert!
Further information:
http://www.leeds.ac.uk

More articles from Physics and Astronomy:

nachricht Solar wind impacts on giant 'space hurricanes' may affect satellite safety
19.09.2017 | Embry-Riddle Aeronautical University

nachricht Integrated lasers on different surfaces
19.09.2017 | The Agency for Science, Technology and Research (A*STAR)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

IVAM’s LaserForum visits the Swiss canton of St. Gallen with the topic ultrashort pulse lasers

06.09.2017 | Event News

 
Latest News

Robust and functional – surface finishing by suspension spraying

19.09.2017 | Materials Sciences

The Wadden Sea and the Elbe Studied with Zeppelin, Drones and Research Ships

19.09.2017 | Earth Sciences

Digging sensors out of an efficiency hole

19.09.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>