Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Los Alamos achieves world-record pulsed magnetic field

24.08.2011
National High Magnetic Field Laboratory moves closer to 100-tesla mark

Researchers at the National High Magnetic Field Laboratory's Pulsed Field Facility at Los Alamos National Laboratory have set a new world record for the strongest magnetic field produced by a nondestructive magnet.

The scientists achieved a field of 92.5 tesla on Thursday, August 18, taking back a record that had been held by a team of German scientists and then, the following day, surpassed their achievement with a whopping 97.4-tesla field. For perspective, Earth's magnetic field is 0.0004 tesla, while a junk-yard magnet is 1 tesla and a medical MRI scan has a magnetic field of 3 tesla.

The ability to create pulses of extremely high magnetic fields nondestructively (high-power magnets routinely rip themselves to pieces due to the large forces involved) provides researchers with an unprecedented tool for studying fundamental properties of materials, from metals and superconductors to semiconductors and insulators. The interaction of high magnetic fields with electrons within these materials provides valuable clues for scientists about the properties of materials. With the recent record-breaking achievement, the Pulsed Field Facility at LANL, a national user facility, will routinely provide scientists with magnetic pulses of 95 tesla, enticing the worldwide user community to Los Alamos for a chance to use this one-of-a-kind capability.

The record puts the Los Alamos team within reach of delivering a magnet capable of achieving 100 tesla, a goal long sought by researchers from around the world, including scientists working at competing magnet labs in Germany, China, France, and Japan.

Such a powerful nondestructive magnet could have a profound impact on a wide range of scientific investigations, from how to design and control material functionality to research into the microscopic behavior of phase transitions. This type of magnet allows researchers to carefully tune material parameters while perfectly reproducing the non-invasive magnetic field. Such high magnetic fields confine electrons to nanometer scale orbits, thereby helping to reveal the fundamental quantum nature of a material.

Thursday's experiment was met with as much excitement as trepidation by the group of condensed matter scientists, high-field magnet technicians, technologists, and pulsed-magnet engineers who gathered to witness the NHMFL-PFF retake the world record. Crammed into the tight confines of the Magnet Lab's control room, they gathered, lab notebooks or caffeine of choice in hand. Their conversation reflected a giddy sense of anticipation tempered with nervousness.

With Mike Gordon commanding the controls that draw power off of a massive 1.4-gigawatt generator system and directs it to the magnet, all eyes and ears were keyed to video monitors showing the massive 100 tesla Multishot Magnet and the capacitor bank located in the now eerily empty Large Magnet Hall next door. The building had been emptied as a standard safety protocol.

Scientists heard a low warping hum, followed by a spine-tingling metallic screech signaling that the magnet was spiking with a precisely distributed electric current of more than 100 megajoules of energy. As the sound dissipated and the monitors confirmed that the magnet performed perfectly, attention turned to data acquired during the shot through two in-situ measurements—proof positive that the magnet had achieved 92.5 tesla, thus yanking back from a team of German scientists a record that Los Alamos had previously held for five years.

The next day's even higher 97.4-tesla achievement was met with high-fives and congratulatory pats on the back. Later, researchers Charles Mielke, Neil Harrison, Susan Seestrom, and Albert Migliori certified with their signatures the data that would be sent to the Guiness Book of World Records.

The NHMFL is sponsored primarily by the National Science Foundation, Division of Materials Research, with additional support from the State of Florida and the DOE. These recent successes were enabled by long-term support from the U.S. Department of Energy's Office of Basic Energy Sciences, and the National Science Foundation's 100 Tesla Multi-Shot magnet program.

About Los Alamos National Laboratory (www.lanl.gov)

Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is operated by Los Alamos National Security, LLC, a team composed of Bechtel National, the University of California, The Babcock & Wilcox Company, and URS for the Department of Energy's National Nuclear Security Administration.

Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health, and global security concerns.

James E. Rickman | EurekAlert!
Further information:
http://www.lanl.gov

More articles from Physics and Astronomy:

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>