Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Light propagation controlled in photonic chips -- major breakthrough in telecommunications field

11.07.2011
Researchers at Columbia Engineering School have built optical nanostructures that enable them to engineer the index of refraction and fully control light dispersion.

They have shown that it is possible for light (electromagnetic waves) to propagate from point A to point B without accumulating any phase, spreading through the artificial medium as if the medium is completely missing in space. This is the first time simultaneous phase and zero-index observations have been made on the chip-scale and at the infrared wavelength.

The study, to be published on Nature Photonics's website July 10, was led by Chee Wei Wong, associate professor of mechanical engineering, and Serdar Kocaman, electrical engineering PhD candidate, both at Columbia Engineering, in collaboration with scientists at the University College of London, Brookhaven National Laboratory, and the Institute of Microelectronics of Singapore.

"We're very excited about this. We've engineered and observed a metamaterial with zero refractive index," said Kocaman. "What we've seen is that the light disperses through the material as if the entire space is missing. The oscillatory phase of the electromagnetic wave doesn't even advance such as in a vacuum — this is what we term a zero-phase delay."

This exact control of optical phase is based on a unique combination of negative and positive refractive indices. All natural known materials have a positive refractive index. By sculpturing these artificial subwavelength nanostructures, the researchers were able to control the light dispersion so that a negative refractive index appeared in the medium. They then cascaded the negative index medium with a positive refractive index medium so that the complete nanostructure behaved as one with an index of refraction of zero.

"Phase control of photons is really important," said Wong. "This is a big step forward in figuring out how to carry information on photonic chips without losing control of the phase of the light."

"We can now control the flow of light, the fastest thing known to us," he continued. "This can enable self-focusing light beams, highly directive antennas, and even potentially an approach to cloak or hide objects, at least in the small-scale or a narrow band of frequencies currently."

This research was supported by grants from the National Science Foundation and the Defense Advanced Research Projects Agency.

Columbia Engineering

Columbia University's Fu Foundation School of Engineering and Applied Science, founded in 1864, offers programs in nine departments to both undergraduate and graduate students. With facilities specifically designed and equipped to meet the laboratory and research needs of faculty and students, Columbia Engineering is home to major Centers in energy, nanoscience, optics, genomic science, materials science, as well as one of the world's leading programs in financial engineering. These interdisciplinary centers are leading the way in their respective fields while individual groups of engineers and scientists collaborate to solve some of society's more vexing challenges. http://www.engineering.columbia.edu/

Holly Evarts | EurekAlert!
Further information:
http://www.columbia.edu
http://www.engineering.columbia.edu/

More articles from Physics and Astronomy:

nachricht Mars 2020 mission to use smart methods to seek signs of past life
17.08.2017 | Goldschmidt Conference

nachricht Gold shines through properties of nano biosensors
17.08.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>