Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Is the Power Grid too Big?

09.04.2014

Right-Sizing the Grid Could Reduce Blackout Risk, According to New Analysis in the Journal "Chaos"

Some 90 years ago, British polymath J.B.S. Haldane proposed that for every animal there is an optimal size -- one which allows it to make best use of its environment and the physical laws that govern its activities, whether hiding, hunting, hoofing or hibernating. Today, three researchers are asking whether there is a "right" size for another type of huge beast: the U.S. power grid.


B.A. Carreras/BACV Solutions

The overall operational "Risk" as a function of the system size (N), showing a decrease at first as the system becomes more efficient with size followed by an increase as the risk of large failures starts to dominate. The optimal size is then the minimum point in the curve.

David Newman, a physicist at the University of Alaska, believes that smaller grids would reduce the likelihood of severe outages, such as the 2003 Northeast blackout that cut power to 50 million people in the United States and Canada for up to two days.

Newman and co-authors Benjamin Carreras, of BACV Solutions in Oak Ridge, Tenn., and Ian Dobson of Iowa State University make their case in the journal Chaos, which is produced by AIP Publishing.

Their investigation began 20 years ago, when Newman and Carreras were studying why stable fusion plasmas turned unstable so quickly. They modeled the problem by comparing the plasma to a sandpile.

"Sandpiles are stable until you get to a certain height. Then you add one more grain and the whole thing starts to avalanche. This is because the pile's grains are already close to the critical angle where they will start rolling down the pile. All it takes is one grain to trigger a cascade," he explained.

While discussing a blackout, Newman and Carreras realized that their sandpile model might help explain grid behavior.

The Structure of the U.S. Power Grid

North America has three power grids, interconnected systems that transmit electricity from hundreds of power plants to millions of consumers. Each grid is huge, because the more power plants and power lines in a grid, the better it can even out local variations in the supply and demand or respond if some part of the grid goes down.

On the other hand, large grids are vulnerable to the rare but significant possibility of a grid-wide blackout like the one in 2003.

"The problem is that grids run close to the edge of their capacity because of economic pressures. Electric companies want to maximize profits, so they don't invest in more equipment than they need," Newman said.

On a hot days, when everyone's air conditioners are on, the grid runs near capacity. If a tree branch knocks down a power line, the grid is usually resilient enough to distribute extra power and make up the difference. But if the grid is already near its critical point and has no extra capacity, there is a small but significant chance that it can collapse like a sandpile.

This is vulnerable to cascading events comes from the fact that the grid's complexity evolved over time. It reflects the tension between economic pressures and government regulations to ensure reliability.

"Over time, the grid evolved in ways that are not pre-engineered," Newman said.

Backup Power Versus Blackout Risk

In their new paper, the researchers ask whether the grid has an optimal size, one large enough to share power efficiently but small enough to prevent enormous blackouts.

The team based its analysis on the Western United States grid, which has more than 16,000 nodes. Nodes include generators, substations, and transformers (which convert high-voltage electricity into low-voltage power for homes and business).

The model started by comparing one 1,000-bus grid with ten 100-bus networks. It then assessed how well the grids shared electricity in response to virtual outages.

"We found that for the best tradeoff between providing backup power and blackout risk, the optimal size was 500 to 700 nodes," Newman said.

Though grid wide blackouts are highly unlikely, they can dominate costs. They are very expensive and take longer to get things back under control. They also require more crews and resources, so utilities can help one another as they do in smaller blackouts.

In smaller grids, the blackouts are smaller and easier to fix because utilities can call for help from surrounding regions. Overall, small grid blackouts have a lower cost to society,” Newman said.

The researchers believe their insights into sizing might apply to other complex, evolved networks like the Internet and financial markets.

"If we reduce the number of connected pieces, maybe we can reduce the societal cost of failures," Newman added.

The article, “Does size matter?” by B. A. Carreras, D. E. Newman, Ian Dobson appears in Chaos: An Interdisciplinary Journal of Nonlinear Science (DOI: 10.1063/1.4868393). It will be published online on April 8, 2014. After that date, it may be accessed at: http://scitation.aip.org/content/aip/journal/chaos/24/2/10.1063/1.4868393

ABOUT THE JOURNAL
Chaos: An Interdisciplinary Journal of Nonlinear Science is devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines. See: http://chaos.aip.org/

Jason Socrates Bardi | newswise

Further reports about: AIP Interdisciplinary Nonlinear Physics capacity electricity pressures

More articles from Physics and Astronomy:

nachricht New thruster design increases efficiency for future spaceflight
16.08.2017 | American Institute of Physics

nachricht Tracking a solar eruption through the solar system
16.08.2017 | American Geophysical Union

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>