Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using invisibility to increase visibility

28.11.2008
Research into the development of invisibility devices has spurred two physicists’ thought on the behaviour of light to overcome the seemingly intractable problem of optical singularities which could soon lead to the manufacturing of a perfect cat’s eye.

A research paper published in a New Journal of Physics’ focus issue ‘Cloaking and Transformation Optics’ called ‘The Transmutation of Singularities in Optical Instruments’, written by Thomas Tyc, Masaryk University, and Ulf Leonhardt, the University of St. Andrews and Singapore National University, shows that it is possible to reflect light from all directions.

Cat’s eyes and glow-in-the-dark clothing are effective because they send light back from where they came to either provide direction to a driver on the road or alert drivers of, say, a cyclist’s presence but although this works well for light from some angles, it does not work well for all.

When light is shone through a glass of water with a straw in it and it appears as though the straw is bent, it is because the speed of light has been affected by the glass and the water that the light has been obstructed by. Physicists measure the effect that materials have on light using the refractive index, with 1 as the speed of light unobstructed in air, and, approximately, 1.5 as the point on the index when light meets glass and water.

What happens however when the material forces light down to zero or shoots it up to infinity on the refractive index? These are called optical singularities and have long been thought impossible to produce but it is what physicists need to understand to create a material that can reflect light from all directions and thereby create the perfect cat’s eye.

Tyc and Leonhardt use ideas from one of the latest trends of optics called transformation optics to transmute the infinity mark on the refractive index into something more practical. Put simply, the scientists have developed a recipe of materials to create optical illusions – some can be used for invisibility devices, others to make things perfectly visible.

As Tyc and Leonhardt write, “Our method works for optical singularities which are the curse of physics, often seeming intractable, but we have found a way of transmuting optical singularities with just harmless crystal defects as a side-effect.”

Applications will probably first appear in wireless technology and radar, for electromagnetic microwaves instead of light, because the required materials for electromagnetic microwaves are easier to manufacture.

Leonhardt and Tyc’s findings appear alongside other scientists’ work in the focus issue where scientists have developed recipes for other optical illusions where physical space appears to be transformed, for example for making invisibility devices.

Joe Winters | alfa
Further information:
http://www.iop.org
http://stacks.iop.org/10/115019

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>