Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using invisibility to increase visibility

28.11.2008
Research into the development of invisibility devices has spurred two physicists’ thought on the behaviour of light to overcome the seemingly intractable problem of optical singularities which could soon lead to the manufacturing of a perfect cat’s eye.

A research paper published in a New Journal of Physics’ focus issue ‘Cloaking and Transformation Optics’ called ‘The Transmutation of Singularities in Optical Instruments’, written by Thomas Tyc, Masaryk University, and Ulf Leonhardt, the University of St. Andrews and Singapore National University, shows that it is possible to reflect light from all directions.

Cat’s eyes and glow-in-the-dark clothing are effective because they send light back from where they came to either provide direction to a driver on the road or alert drivers of, say, a cyclist’s presence but although this works well for light from some angles, it does not work well for all.

When light is shone through a glass of water with a straw in it and it appears as though the straw is bent, it is because the speed of light has been affected by the glass and the water that the light has been obstructed by. Physicists measure the effect that materials have on light using the refractive index, with 1 as the speed of light unobstructed in air, and, approximately, 1.5 as the point on the index when light meets glass and water.

What happens however when the material forces light down to zero or shoots it up to infinity on the refractive index? These are called optical singularities and have long been thought impossible to produce but it is what physicists need to understand to create a material that can reflect light from all directions and thereby create the perfect cat’s eye.

Tyc and Leonhardt use ideas from one of the latest trends of optics called transformation optics to transmute the infinity mark on the refractive index into something more practical. Put simply, the scientists have developed a recipe of materials to create optical illusions – some can be used for invisibility devices, others to make things perfectly visible.

As Tyc and Leonhardt write, “Our method works for optical singularities which are the curse of physics, often seeming intractable, but we have found a way of transmuting optical singularities with just harmless crystal defects as a side-effect.”

Applications will probably first appear in wireless technology and radar, for electromagnetic microwaves instead of light, because the required materials for electromagnetic microwaves are easier to manufacture.

Leonhardt and Tyc’s findings appear alongside other scientists’ work in the focus issue where scientists have developed recipes for other optical illusions where physical space appears to be transformed, for example for making invisibility devices.

Joe Winters | alfa
Further information:
http://www.iop.org
http://stacks.iop.org/10/115019

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>