Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using invisibility to increase visibility

28.11.2008
Research into the development of invisibility devices has spurred two physicists’ thought on the behaviour of light to overcome the seemingly intractable problem of optical singularities which could soon lead to the manufacturing of a perfect cat’s eye.

A research paper published in a New Journal of Physics’ focus issue ‘Cloaking and Transformation Optics’ called ‘The Transmutation of Singularities in Optical Instruments’, written by Thomas Tyc, Masaryk University, and Ulf Leonhardt, the University of St. Andrews and Singapore National University, shows that it is possible to reflect light from all directions.

Cat’s eyes and glow-in-the-dark clothing are effective because they send light back from where they came to either provide direction to a driver on the road or alert drivers of, say, a cyclist’s presence but although this works well for light from some angles, it does not work well for all.

When light is shone through a glass of water with a straw in it and it appears as though the straw is bent, it is because the speed of light has been affected by the glass and the water that the light has been obstructed by. Physicists measure the effect that materials have on light using the refractive index, with 1 as the speed of light unobstructed in air, and, approximately, 1.5 as the point on the index when light meets glass and water.

What happens however when the material forces light down to zero or shoots it up to infinity on the refractive index? These are called optical singularities and have long been thought impossible to produce but it is what physicists need to understand to create a material that can reflect light from all directions and thereby create the perfect cat’s eye.

Tyc and Leonhardt use ideas from one of the latest trends of optics called transformation optics to transmute the infinity mark on the refractive index into something more practical. Put simply, the scientists have developed a recipe of materials to create optical illusions – some can be used for invisibility devices, others to make things perfectly visible.

As Tyc and Leonhardt write, “Our method works for optical singularities which are the curse of physics, often seeming intractable, but we have found a way of transmuting optical singularities with just harmless crystal defects as a side-effect.”

Applications will probably first appear in wireless technology and radar, for electromagnetic microwaves instead of light, because the required materials for electromagnetic microwaves are easier to manufacture.

Leonhardt and Tyc’s findings appear alongside other scientists’ work in the focus issue where scientists have developed recipes for other optical illusions where physical space appears to be transformed, for example for making invisibility devices.

Joe Winters | alfa
Further information:
http://www.iop.org
http://stacks.iop.org/10/115019

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>