Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Inexpensive plastic used in CDs could improve aircraft, computer electronics

Physics professor at UH uses Air Force grants to create highly conductive nanocomposites

If one University of Houston professor has his way, the inexpensive plastic now used to manufacture CDs and DVDs will one day soon be put to use in improving the integrity of electronics in aircraft, computers and iPhones.

Thanks to a pair of grants from the U.S. Air Force, Shay Curran, associate professor of physics at UH, and his research team have demonstrated ultra-high electrical conductive properties in plastics, called polycarbonates, by mixing them with just the right amount and type of carbon nanotubes.

The findings are chronicled in a paper titled "Electrical Transport Measurements of Highly Conductive Carbon Nanotube/Poly(bisphenol A carbonate) Composite," appearing in a recent issue of the Journal of Applied Physics, the archival publication of the American Institute of Physics for significant new results in the field.

Curran, who initially began this form of research a decade ago at Trinity College Dublin, started to look at high-conductive plastics in a slightly different manner. Curran's team has come up with a strategy to achieve higher conductivities using carbon nanotubes in plastic hosts than what has been currently achieved. By combining nanotubes with polycarbonates, Curran's group was able to reach a milestone of creating nanocomposites with ultra-high conductive properties.

"While its mechanical and optical properties are very good, polycarbonate is a non-conductive plastic. That means its ability to carry an electrical charge is as good as a tree, which is pretty awful," Curran said. "Imagine that this remarkable plastic can now not only have good optical and mechanical properties, but also good electrical characteristics. By being able to tailor the amount of nanotubes we can add to the composite, we also can change it from the conductivity of silicon to a few orders below that achieved by metals."

Making this very inexpensive plastic highly conductive could benefit electronics in everything from military aircraft to personal computers. Computer failure, for instance, results from the build up of thermal and electrical charges, so developing these polymer nanotube composites into an antistatic coating or to provide a shield against electromagnetic interference would increase the lifespan of computing devices, ranging from PCs to PDAs.

The next step of this research is to develop ink formulations to paint these polycarbonate nanocomposites onto various electrical components. Normally, metal plates are used to dissipate electrical charge, so it's not surprising that the availability of a paintable ink would be particularly appealing to the Air Force for its lightweight properties, resulting in lighter aircraft that guzzle less gas.

Another key component of this latest research is that pristine nanotubes disbursed in this polycarbonate were found to possess an even higher conductivity than acid-treated carbon nanotubes. Traditionally, the tubes are sonicated, or treated with acid, to clean them and remove soot to get a higher conductivity. This, however, damages the tubes and exposes them to defects. Instead, Curran and his group were able to centrifuge, or swirl, them. This takes a little longer, but increases the potential to have higher conductivities. He attributes this to the incredibly clean samples of carbon nanotubes obtained from fellow collaborator David Carroll in the physics department at Wake Forest University.

In addition to Curran and Carroll, the team behind these remarkable findings includes Donald Birx, professor of electrical engineering and vice president for research at UH, two of Curran's former post-doctoral students, Jamal Talla and Donghui Zhang, and a current Curran student, Sampath Dias.

Coincidentally, Curran's former thesis supervisor Werner Blau and his group in the department of physics at Trinity College Dublin have come out with similar findings recently in the journal ACS Nano. Both groups really have been pushing hard in the area of polymer nanotube composites during the course of the last decade. Curran said his group at UH achieved the highest conductivity levels so far, but also is encouraged by Blau's success and said repeating these types of outcomes will open doors for even higher values.

"While these are phenomenal results, finding these unusual highly conductive properties has not even begun to scratch the surface," Curran said. "There is hard science behind it, so developing it further will require significant investment. And we are very thankful to the Air Force for giving us this auspicious start."

About the University of Houston

The University of Houston, Texas' premier metropolitan research and teaching institution, is home to more than 40 research centers and institutes and sponsors more than 300 partnerships with corporate, civic and governmental entities. UH, the most diverse research university in the country, stands at the forefront of education, research and service with more than 36,000 students.

About the College of Natural Sciences and Mathematics

The UH College of Natural Sciences and Mathematics, with nearly 400 faculty members and approximately 4,000 students, offers bachelor's, master's and doctoral degrees in the natural sciences, computational sciences and mathematics. Faculty members in the departments of biology and biochemistry, chemistry, computer science, geosciences, mathematics and physics have internationally recognized collaborative research programs in association with UH interdisciplinary research centers, Texas Medical Center institutions and national laboratories.

For more information about UH, visit the university's Newsroom at

To receive UH science news via e-mail, visit

For additional news alerts about UH, follow us on Facebook at and on Twitter at

Lisa Merkl | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>