Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The impending revolution of low-power quantum computers

23.11.2011
Electronics could be 100 times less energy-hungry thanks to a quantum phenomenon known as the tunnel effect - by 2017 in consumer electronics

By 2017, quantum physics will help reduce the energy consumption of our computers and cellular phones by up to a factor of 100. For research and industry, the power consumption of transistors is a key issue. The next revolution will likely come from tunnel-FET, a technology that takes advantage of a phenomenon referred to as "quantum tunneling."

At the EPFL, but also in the laboratories of IBM Zurich and the CEA-Leti in France, research is well underway. As part of a special issue of Nature devoted to silicon, Adrian Ionescu, an EPFL researcher, has written an article on the topic.

Transistors that exploit a quantum quirk

Today's computers have no less than a billion transistors in the CPU alone. These small switches that turn on and off provide the famous binary instructions, the 0s and 1s that let us send emails, watch videos, move the mouse pointer… and much more. The technology used in today's transistors is called "field effect;" whereby voltage induces an electron channel that activates the transistor. But field effect technology is approaching its limits, particularly in terms of power consumption.

Tunnel-FET technology is based on a fundamentally different principle. In the transistor, two chambers are separated by an energy barrier. In the first, a horde of electrons awaits while the transistor is deactivated. When voltage is applied, they cross the energy barrier and move into the second chamber, activating the transistor in so doing.

In the past, the tunnel effect was known to disrupt the operation of transistors. According to quantum theory, some electrons cross the barrier, even if they apparently don't have enough energy to do so. By reducing the width of this barrier, it becomes possible to amplify and take advantage of the quantum effect – the energy needed for the electrons to cross the barrier is drastically reduced, as is power consumption in standby mode.

Mass production is imminent

"By replacing the principle of the conventional field effect transistor by the tunnel effect, one can reduce the voltage of transistors from 1 volt to 0.2 volts," explains Ionescu. In practical terms, this decrease in electrical tension will reduce power consumption by up to a factor of 100. The new generation microchips will combine conventional and tunnel-FET technology. "The current prototypes by IBM and the CEA-Leti have been developed in a pre-industrial setting. We can reasonably expect to see mass production by around 2017."

An essential technology for a major European project

For Ionescu, who heads the Guardian Angels project (a project vetted for a billion Euro grant from the EU), tunnel-FET technology is without a doubt the next big technological leap in the field of microprocessors. "In the Guardian Angels project, one of our objectives is to find solutions to reduce the power consumption of processors. Tunnel-FET is the next revolution that will help us achieve this goal." The aim: design ultra-miniaturized, zero-power electronic personal assistants. Tunnel-FET technology is one of the first major stages in the project's roadmap. IBM and the CEA-Leti are also partners in the project.

Contact :

Adrian Ionescu, Nanoelectronic Devices Laboratory, EPFL, adrian.ionescu@epfl.ch or 41-21-693-39-78 / 41-21-693-39-79

Lionel Pousaz, Media and Communication Service, lionel.pousaz@epfl.ch or 41-79-559-71-61

Reference :

Nature : Tunnel field-effect transistors as energy-efficient electronic switches

Link:

http://www.nature.com/nature/journal/v479/n7373/full/nature10679.html

Lionel Pousaz | EurekAlert!
Further information:
http://www.epfl.ch

Further reports about: EPFL Ionescu Tunnel-FET cellular phone power consumption tunnel effect

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>