Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The impending revolution of low-power quantum computers

23.11.2011
Electronics could be 100 times less energy-hungry thanks to a quantum phenomenon known as the tunnel effect - by 2017 in consumer electronics

By 2017, quantum physics will help reduce the energy consumption of our computers and cellular phones by up to a factor of 100. For research and industry, the power consumption of transistors is a key issue. The next revolution will likely come from tunnel-FET, a technology that takes advantage of a phenomenon referred to as "quantum tunneling."

At the EPFL, but also in the laboratories of IBM Zurich and the CEA-Leti in France, research is well underway. As part of a special issue of Nature devoted to silicon, Adrian Ionescu, an EPFL researcher, has written an article on the topic.

Transistors that exploit a quantum quirk

Today's computers have no less than a billion transistors in the CPU alone. These small switches that turn on and off provide the famous binary instructions, the 0s and 1s that let us send emails, watch videos, move the mouse pointer… and much more. The technology used in today's transistors is called "field effect;" whereby voltage induces an electron channel that activates the transistor. But field effect technology is approaching its limits, particularly in terms of power consumption.

Tunnel-FET technology is based on a fundamentally different principle. In the transistor, two chambers are separated by an energy barrier. In the first, a horde of electrons awaits while the transistor is deactivated. When voltage is applied, they cross the energy barrier and move into the second chamber, activating the transistor in so doing.

In the past, the tunnel effect was known to disrupt the operation of transistors. According to quantum theory, some electrons cross the barrier, even if they apparently don't have enough energy to do so. By reducing the width of this barrier, it becomes possible to amplify and take advantage of the quantum effect – the energy needed for the electrons to cross the barrier is drastically reduced, as is power consumption in standby mode.

Mass production is imminent

"By replacing the principle of the conventional field effect transistor by the tunnel effect, one can reduce the voltage of transistors from 1 volt to 0.2 volts," explains Ionescu. In practical terms, this decrease in electrical tension will reduce power consumption by up to a factor of 100. The new generation microchips will combine conventional and tunnel-FET technology. "The current prototypes by IBM and the CEA-Leti have been developed in a pre-industrial setting. We can reasonably expect to see mass production by around 2017."

An essential technology for a major European project

For Ionescu, who heads the Guardian Angels project (a project vetted for a billion Euro grant from the EU), tunnel-FET technology is without a doubt the next big technological leap in the field of microprocessors. "In the Guardian Angels project, one of our objectives is to find solutions to reduce the power consumption of processors. Tunnel-FET is the next revolution that will help us achieve this goal." The aim: design ultra-miniaturized, zero-power electronic personal assistants. Tunnel-FET technology is one of the first major stages in the project's roadmap. IBM and the CEA-Leti are also partners in the project.

Contact :

Adrian Ionescu, Nanoelectronic Devices Laboratory, EPFL, adrian.ionescu@epfl.ch or 41-21-693-39-78 / 41-21-693-39-79

Lionel Pousaz, Media and Communication Service, lionel.pousaz@epfl.ch or 41-79-559-71-61

Reference :

Nature : Tunnel field-effect transistors as energy-efficient electronic switches

Link:

http://www.nature.com/nature/journal/v479/n7373/full/nature10679.html

Lionel Pousaz | EurekAlert!
Further information:
http://www.epfl.ch

Further reports about: EPFL Ionescu Tunnel-FET cellular phone power consumption tunnel effect

More articles from Physics and Astronomy:

nachricht Two dimensional circuit with magnetic quasi-particles
22.01.2018 | Technische Universität Kaiserslautern

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>