Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hubble Astronomers Uncover an Overheated Early Universe

08.10.2010
If you think global warming is bad, 11 billion years ago the entire universe underwent, well, universal warming.

The consequence was that fierce blasts of radiation from voracious black holes stunted the growth of some small galaxies for a stretch of 500 million years.

This is the conclusion of a team of astronomers who used the new capabilities of NASA's Hubble Space Telescope to probe the invisible, remote universe.

Using the newly installed Cosmic Origins Spectrograph (COS) they have identified an era, from 11.7 to 11.3 billion years ago, when the universe stripped electrons off from primeval helium atoms - a process called ionization. This process heated intergalactic gas and inhibited it from gravitationally collapsing to form new generations of stars in some small galaxies. The lowest-mass galaxies were not even able to hold onto their gas, and it escaped back into intergalactic space.

Michael Shull of the University of Colorado and his team were able to find the telltale helium spectral absorption lines in the ultraviolet light from a quasar - the brilliant core of an active galaxy. The quasar beacon shines light through intervening clouds of otherwise invisible gas, like a headlight shining through a fog. The beam allows for a core-sample probe of the clouds of gas interspersed between galaxies in the early universe.

The universe went though an initial heat wave over 13 billion years ago when energy from early massive stars ionized cold interstellar hydrogen from the big bang. This epoch is actually called reionization because the hydrogen nuclei were originally in an ionized state shortly after the big bang.

But Hubble found that it would take another 2 billion years
before the universe produced sources of ultraviolet radiation with enough energy to do the heavy lifting and reionize the primordial helium that was also cooked up in the big bang.

This radiation didn't come from stars, but rather from quasars. In fact the epoch when the helium was being reionized corresponds to a transitory time in the universe's history when quasars were most abundant.

The universe was a rambunctious place back then. Galaxies frequently collided, and this engorged supermassive black holes in the cores of galaxies with infalling gas. The black holes furiously converted some of the gravitational energy of this mass to powerful far-ultraviolet radiation that would blaze out of galaxies. This heated the intergalactic helium from 18,000 degrees Fahrenheit to nearly 40,000 degrees. After the helium was reionized in the universe, intergalactic gas again cooled down and dwarf galaxies could resume normal assembly. "I imagine quite a few more dwarf galaxies may have formed if helium reionization had not taken place," said Shull.

So far Shull and his team only have one sightline to measure the helium transition, but the COS science team plans to use Hubble to look in other directions to see if the helium reionization uniformly took place across the universe.

The science team's results will be published in the October 20 issue of The Astrophysical Journal.

For illustrations and more information about these results, visit:

http://hubblesite.org/news/2010/31
http://www.nasa.gov/hubble
The Hubble Space Telescope is a project of international
cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center manages tthe telescope. The Space Telescope Science Institute (STScI) conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, Inc., in Washington, D.C.

Ray Villard | Newswise Science News
Further information:
http://www.stsci.edu
http://www.nasa.gov/hubble
http://hubblesite.org/news/2010/31

More articles from Physics and Astronomy:

nachricht Temperature-controlled fiber-optic light source with liquid core
20.06.2018 | Leibniz-Institut für Photonische Technologien e. V.

nachricht New material for splitting water
19.06.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Better model of water under extreme conditions could aid understanding of Earth's mantle

21.06.2018 | Earth Sciences

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>