Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


How does order emerge?


Scientists from the MPQ, LMU, and the FUB analyse how fast order can appear in a quantum-mechanical system.

During the freezing of water, the initially unordered molecules start to form an ordered crystal, namely ice. During this phase transition, they rearrange from an unordered into a more ordered state. This setting naturally poses one important question: How long does this phase transition take, i.e. how long does it take for each molecule to find its place in the crystal?

While the atoms are strongly localized in the initial state (upmost row) in the deep lattice,

correlations develop during the crossing of the phase transition induced by lowering the lattice depth.

In the final weak lattice (lowest row), the correlations would in principle span the whole lattice, if the phase transition could be crossed infinitely slow. In reality, however, the finite ramp speed limits the correlation length to a finite value. (Graphic: Quantum Optics Group, LMU)

The answer to this and similar questions has important consequences in e.g. metallurgy, since the size of the resulting crystal grains plays a major role in determining the elasticity or brittleness of steel. While these questions have been studied extensively for classical systems, they are relatively unexplored in the context of quantum systems.

By using ultracold atoms in optical lattices, a team led by Ulrich Schneider and Immanuel Bloch at the Max Planck Institute of Quantum Optics, the Ludwig-Maximilians-Universität Munich, the Freie Universität Berlin, and the Consejo Superior de Investigaciones Científicas in Madrid have succeeded in measuring the emergence of order in a clean and well controlled experiment. Their results reveal deficiencies in current theoretical models and have been published this week in the „Proceedings of the National Academy of Sciences“.

The essential question for any phase transition is: How does it actually happen, i.e. how does the system evolve from one phase to another? Especially for quantum systems there is typically no easy answer available, since the dynamics of these systems are typically much more complex than the phases themselves.

In addition, there is an effect called critical-slowing-down, which means that the reaction time of the system strongly increases on approaching the phase transition point and diverges at this point. As a consequence, the system can never evolve completely “smooth” from an unordered into an ordered phase. How fast the correlations characterizing the ordered phase can emerge and spread, is therefore a central problem in the physics of phase transitions.

Intuitively, one can imagine a collection of small arrows that initially point in random directions. Beyond the phase transition, each arrow now wants to point in the same direction as its neighbours. So, ultimately, all arrows want to be aligned but which direction will be chosen? Since at first all directions are equivalent, the arrows have to spontaneously break this symmetry, meaning they have to agree on one particular orientation. How fast can this process of ordering happen?

The emergence of ordered phases has been studied theoretically already for some time. Now for the first time the scientists were able to investigate this process in a clean and precisely controlled synthetic many-body system: This system is formed by up to a hundred thousand atoms that have been cooled deep into the quantum regime and then were localized to individual lattice site in a so-called optical lattice, that is a crystal of light formed by overlapping and interfering laser beams.

In this Mott insulator there exist no correlations between lattice sites. By now increasing the coupling between the lattice sites—the tunneling rate of particles—a quantum phase transition into another phase can be induced. In this new, superfluid phase, the particles are free to move through the lattice. Since all atoms move in a coherent fashion—they will ultimately all be part of a single wave function, a Bose-Einstein condensate—this results in long-range correlations, even between very distant lattice sites.

In their experiment, the experimental team in Munich could now for the first time observe this emergence of correlations quantitatively and study its time dependence. They could compare their results to theoretical models and show that these models are too simple to describe realistic situations and will need to be extended by novel and not yet known contributions.

In the one-dimensional case, that is a string of lattice sites, the experimental results could be compared to exact numerical calculations performed on classical super-computers by the team around Jens Eisert from the Freie Universität Berlin. This comparison constitutes an independent check of the experiment, which it passed with flying colours.

Motivated by this success, the experiment was then extended to two- and three dimensional situations, where no numerical calculations are feasible. The obtained results can now be used to test and benchmark novel theoretical concepts and thereby advance our fundamental knowledge and understanding of the many-body dynamics in quantum systems.

The present experiment can be viewed as a Quantum Simulator: By performing experiments on well-controlled model systems we can learn about the behaviour of complex systems, which are often challenging to directly study experimentally and impossible to simulate numerically. By providing much-needed benchmark data, Quantum Simulators will help to fundamentally advance our knowledge about such systems. [U.S./O.M.]

Original publication:

Simon Braun, Mathis Friesdorf, Sean S. Hodgman, Michael Schreiber, Jens Philipp Ronzheimer, Arnau Riera, Marco del Rey, Immanuel Bloch, Jens Eisert, and Ulrich Schneider
Emergence of coherence and the dynamics of quantum phase transitions
Proceedings of the National Academy of Sciences, 9 March 2015


Dr. Ulrich Schneider
LMU München, Faculty of physics
Schellingstr. 4, 80799 Munich, Germany
Phone: +49 (0)89 / 2180 -6129
E-mail: ulrich.schneider@physik.uni-mü

Prof. Dr. Immanuel Bloch
Chair of Quantum Optics, LMU München
Schellingstr. 4, 80799 Munich
Director at Max Planck Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching, Germany
Phone: +49 (0)89 / 32 905 -138

Dr. Olivia Meyer-Streng
Press & Public Relations
Max Planck Institute of Quantum Optics, Garching, Germany
Phone: +49 (0)89 / 32 905 -213

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Further information:

More articles from Physics and Astronomy:

nachricht Light-driven atomic rotations excite magnetic waves
24.10.2016 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>