Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-performance computer for simulating laser processes in nanophotonics

16.12.2010
Computer simulations play an essential role in research and development work. They provide a detailed insight into processes from which answers to specific questions can be derived.

The simulation of laser-based production processes has to cover a wide span of time and length scales, especially in new techniques from micro- and nanophotonics. This requires special algorithms which have already been used successfully at the Fraunhofer Institute for Laser Technology ILT, as well as a massive amount of computer power. Fraunhofer ILT has built a high-performance computer cluster at the »Center for Nanophotonics«.

In laser-based production operations, important process variables are difficult to measure in the micrometer-scale process zones owing to the tiny dimensions and very high temperatures that prevail. Computer simulations are therefore being increasingly used to optimize performance. They provide an insight into the processes and are easier to automate and often more cost-effective than experiments. What’s more, simulations enable fluctuations and measurement uncertainties to be excluded or specifically taken into account.

Multiscales – no problem for the computer cluster

Simulations of laser-based production processes tend to be multi-scale problems, in which a large expansion of the component has to be calculated at a very high resolution. Micro processing requires a resolution of a few nanometers and a calculation area with an expansion of several millimeters. For example, when processing thin-film solar cells, structures must be ablated extremely precisely and evenly from the layers which are just a few 100 nanometers thick.

Nano for macro

But in macro processing too, e.g. steel plate cutting, it is becoming increasingly important to be able to control small-scale effects in order to expand the process limits. To optimize expulsion of the molten metal during laser cutting, for instance, boundary layer phenomena of ultrasonic gas flows in the kerf are analyzed in detail.

High computer power in the »Center for Nanophotonics«

The required large number of grid points exceeds the capacity of conventional workstations in terms of processing time and storage space. The funding provided by the state of North Rhine-Westphalia for the new »Center for Nanophotonics« in Aachen has made it possible to create a high-performance computer cluster for simulations of these multi-scale tasks at Fraunhofer ILT. The final stage of the high-power computer system was installed and started up in November. In developing the concept, the research scientists in Aachen deployed a heterogeneous computer architecture consisting of multi-core processors and special high-performance computers with CUDA architecture, which allows parts of the calculations to be performed on graphics processors (GPUs). This modern concept is particularly suitable for the massively parallel execution of frequently recurring calculation steps. The installed cluster system has 376 CPUs and eight graphics processor systems with altogether 1920 GPUs. The storage capacity amounts to close on 2 terabytes of main memory and 67 terabytes of hard disk storage, of which 20 terabytes are on redundant interconnected drives. Data is exchanged within the cluster by means of a fast InfiniBand network. The theoretical total computer power is close on 10 teraflops, which roughly corresponds to the power of 1,000 modern office PCs. »The system is available to us around the clock on an exclusive basis. This means that simulations can be performed specifically for laser processes, to further our research and on behalf of customers, without any long waiting times. This makes our work much easier while also saving time and money,« explains Dr. Jens Schüttler, project manager at Fraunhofer ILT.

Applications

The new high-performance computer system can be used to simulate complex operations from laser material processing at high resolution in a short processing time. Applications include molecular dynamic simulation of ablation with ultra-short pulses, the configuration of micro processing techniques and the design of gas flows and gas-cutting nozzles. The propagation of laser radiation at wavelength scale and the stability of the melting dynamics in laser cutting can also be simulated. This range of applications is interesting for manufacturers and users of laser processing machines who want to analyze, optimize and improve their processes.


Contacts at Fraunhofer ILT
Our experts will be pleased to assist if you have any questions:
Dr. Jens Schüttler
Modeling and Simulation
Phone +49 241 8906-680
jens.schuettler@ilt.fraunhofer.de
Dipl. Phys. Ulrich Jansen
Modeling and Simulation
Phone +49 241 8906-680
ulrich.jansen@ilt.fraunhofer.de
Prof. Dr. Wolfgang Schulz
Modeling and Simulation
Phone +49 241 8906-204
wolfgang.schulz@ilt.fraunhofer.de
Fraunhofer Institute for Laser technology ILT
Steinbachstrasse 15
52074 Aachen
Tel. +49 241 8906-0
Fax. +49 241 8906-121

Axel Bauer | Fraunhofer ILT
Further information:
http://www.ilt.fraunhofer.de

More articles from Physics and Astronomy:

nachricht Tracing aromatic molecules in the early universe
23.03.2017 | University of California - Riverside

nachricht New study maps space dust in 3-D
23.03.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>