Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


High-performance computer for simulating laser processes in nanophotonics

Computer simulations play an essential role in research and development work. They provide a detailed insight into processes from which answers to specific questions can be derived.

The simulation of laser-based production processes has to cover a wide span of time and length scales, especially in new techniques from micro- and nanophotonics. This requires special algorithms which have already been used successfully at the Fraunhofer Institute for Laser Technology ILT, as well as a massive amount of computer power. Fraunhofer ILT has built a high-performance computer cluster at the »Center for Nanophotonics«.

In laser-based production operations, important process variables are difficult to measure in the micrometer-scale process zones owing to the tiny dimensions and very high temperatures that prevail. Computer simulations are therefore being increasingly used to optimize performance. They provide an insight into the processes and are easier to automate and often more cost-effective than experiments. What’s more, simulations enable fluctuations and measurement uncertainties to be excluded or specifically taken into account.

Multiscales – no problem for the computer cluster

Simulations of laser-based production processes tend to be multi-scale problems, in which a large expansion of the component has to be calculated at a very high resolution. Micro processing requires a resolution of a few nanometers and a calculation area with an expansion of several millimeters. For example, when processing thin-film solar cells, structures must be ablated extremely precisely and evenly from the layers which are just a few 100 nanometers thick.

Nano for macro

But in macro processing too, e.g. steel plate cutting, it is becoming increasingly important to be able to control small-scale effects in order to expand the process limits. To optimize expulsion of the molten metal during laser cutting, for instance, boundary layer phenomena of ultrasonic gas flows in the kerf are analyzed in detail.

High computer power in the »Center for Nanophotonics«

The required large number of grid points exceeds the capacity of conventional workstations in terms of processing time and storage space. The funding provided by the state of North Rhine-Westphalia for the new »Center for Nanophotonics« in Aachen has made it possible to create a high-performance computer cluster for simulations of these multi-scale tasks at Fraunhofer ILT. The final stage of the high-power computer system was installed and started up in November. In developing the concept, the research scientists in Aachen deployed a heterogeneous computer architecture consisting of multi-core processors and special high-performance computers with CUDA architecture, which allows parts of the calculations to be performed on graphics processors (GPUs). This modern concept is particularly suitable for the massively parallel execution of frequently recurring calculation steps. The installed cluster system has 376 CPUs and eight graphics processor systems with altogether 1920 GPUs. The storage capacity amounts to close on 2 terabytes of main memory and 67 terabytes of hard disk storage, of which 20 terabytes are on redundant interconnected drives. Data is exchanged within the cluster by means of a fast InfiniBand network. The theoretical total computer power is close on 10 teraflops, which roughly corresponds to the power of 1,000 modern office PCs. »The system is available to us around the clock on an exclusive basis. This means that simulations can be performed specifically for laser processes, to further our research and on behalf of customers, without any long waiting times. This makes our work much easier while also saving time and money,« explains Dr. Jens Schüttler, project manager at Fraunhofer ILT.


The new high-performance computer system can be used to simulate complex operations from laser material processing at high resolution in a short processing time. Applications include molecular dynamic simulation of ablation with ultra-short pulses, the configuration of micro processing techniques and the design of gas flows and gas-cutting nozzles. The propagation of laser radiation at wavelength scale and the stability of the melting dynamics in laser cutting can also be simulated. This range of applications is interesting for manufacturers and users of laser processing machines who want to analyze, optimize and improve their processes.

Contacts at Fraunhofer ILT
Our experts will be pleased to assist if you have any questions:
Dr. Jens Schüttler
Modeling and Simulation
Phone +49 241 8906-680
Dipl. Phys. Ulrich Jansen
Modeling and Simulation
Phone +49 241 8906-680
Prof. Dr. Wolfgang Schulz
Modeling and Simulation
Phone +49 241 8906-204
Fraunhofer Institute for Laser technology ILT
Steinbachstrasse 15
52074 Aachen
Tel. +49 241 8906-0
Fax. +49 241 8906-121

Axel Bauer | Fraunhofer ILT
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>