Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gravitational Wave Observatory listens for echoes of universe's birth

21.08.2009
An investigation by a major scientific group headed by a University of Florida professor has advanced understanding of the early evolution of the universe.

An analysis of data from the Laser Interferometer Gravitational-Wave Observatory Scientific Collaboration, or LIGO, and the Virgo Collaboration has set the most stringent limits yet on the amount of gravitational waves that could have come from the Big Bang in the gravitational wave frequency band where LIGO can observe. In doing so, scientists have put new constraints on the details of how the universe looked in its earliest moments.

"Gravitational waves are the only way to directly probe the universe at the moment of its birth; they're absolutely unique in that regard," said David Reitze, a UF professor of physics and the spokesperson for the LIGO Scientific Collaboration. "We simply can't get this information from any other type of astronomy. This is what makes this result in particular, and gravitational-wave astronomy in general, so exciting."

The research is set to appear in the Aug. 20 issue of the journal Nature. Seventeen UF faculty members, postdoctoral associates and graduate students join the paper's authors.

Much like it produced the cosmic microwave background, the Big Bang is believed to have created a flood of gravitational waves -- ripples in the fabric of space and time -- that carry information about the universe as it was immediately after the Big Bang. These waves would be observed as the "stochastic background," analogous to a superposition of many waves of different sizes and directions on the surface of a pond. The amplitude of this background is directly related to the parameters that govern the behavior of the infant universe.

Earlier measurements of the cosmic microwave background have placed the most stringent upper limits of the stochastic gravitational wave background at very large distance scales and low frequencies. The new measurements by LIGO directly probe the gravitational wave background in the first minute of its existence, at time scales much shorter than accessible by the cosmic microwave background.

The research also constrains models of cosmic strings, objects that are proposed to have been left over from the beginning of the universe and subsequently stretched to enormous lengths by the universe's expansion. These strings, some cosmologists say, can form loops that produce gravitational waves as they oscillate, decay and eventually disappear.

Gravitational waves carry with them information about their violent origins and about the nature of gravity that cannot be obtained by conventional astronomical tools. The existence of the waves was predicted by Albert Einstein in 1916 in his general theory of relativity. The LIGO and GEO instruments have been actively searching for the waves since 2002; the Virgo interferometer joined the search in 2007.

The UF LIGO research group built one of the most important and complex parts of the gravitational wave detector, the input optics, said David Tanner, a UF professor of physics. The input optics takes light from the laser, shapes the beam into an ideal form, and directs it to the interferometer at the heart of the gravitational wave detector. UF scientists are working to design and build a second version of the input optics for a major upgrade to LIGO scheduled to go on line in three to four years.

"UF also plays important role in analysis of LIGO data, including searches for sharp bursts of gravitational waves, and for the stochastic background of gravitational waves … the subject of the just published paper," Tanner wrote in an e-mail.

The authors of the new paper report that the stochastic background of gravitational waves has not yet been discovered. But the nondiscovery of the background described in the Nature paper already offers its own brand of insight into the universe's earliest history.

The analysis used data collected from the LIGO interferometers in Hanford, Wash., and Livingston, La. Each of the L-shaped interferometers uses a laser split into two beams that travel back and forth down long interferometer arms. The two beams are used to monitor the difference between the two interferometer arm lengths.

"Since we have not observed the stochastic background, some of these early-universe models that predict a relatively large stochastic background have been ruled out," said Vuk Mandic, assistant professor at the University of Minnesota and the head of the group that performed the analysis. "We now know a bit more about parameters that describe the evolution of the universe when it was less than one minute old."

Dave Reitze | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Physics and Astronomy:

nachricht Igniting a solar flare in the corona with lower-atmosphere kindling
29.03.2017 | New Jersey Institute of Technology

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>