Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Glaciers sizzle as they disappear into warmer water

28.11.2013
The sounds of bubbles escaping from melting ice make underwater glacial fjords one of the loudest natural marine environments on earth

Scientists have recorded and identified one of the most prominent sounds of a warming planet: the sizzle of glacier ice as it melts into the sea. The noise, caused by trapped air bubbles squirting out of the disappearing ice, could provide clues to the rate of glacier melt and help researchers better monitor the fast-changing polar environments.

Geophysicist Erin Pettit, a researcher at the University of Alaska, had often heard popping, crackling sounds while out kayaking in the frigid northern waters. The sounds were also picked up by underwater microphones Pettit set up off the Alaskan coast, and at a much louder volume than above the surface.

"If you were underneath the water in a complete downpour, with the rain pounding the water, that's one of the loudest natural ocean sounds out there," she said. "In glacial fjords we record that level of sound almost continually."

While Pettit suspected the din was caused by melting ice, she couldn't confirm that hypothesis without a more controlled experiment. So she enlisted the help of Kevin Lee and Preston Wilson, acoustics experts from the University of Texas. Pettit sent the Texas researchers chunks of glacier, which they mounted in a tank of chilled water. Lee and Wilson recorded video and audio of the ice as it melted and were able to match sounds on the recording to the escape of bubbles from the ice.

"Most of the sound comes from the bubbles oscillating when they're ejected," Lee said. "A bubble when it is released from a nozzle or any orifice will naturally oscillate at a frequency that's inversely proportional to the radius of the bubble," he said, meaning the smaller the bubble, the higher the pitch. The researchers recorded sounds in the 1 – 3 kilohertz range, which is right in the middle of the frequencies humans hear.

Scientists have known for decades that the bubbles in glaciers form when snow crystals trap pockets of air and then get slowly squashed down under the weight of more snow. As the snow is compacted it turns into ice and the air bubbles become pressurized. The regular way the bubbles form means that they are evenly distributed throughout the ice, an important characteristic if you want to use the sound intensity of bubble squirts to measure ice melt rate.

While the symphony of melting ice might not carry the same emotional wallop as images, sound still has its own, sometimes very loud, story to tell. Pettit and Lee say they could imagine using hydrophone recordings in glacial fjords to monitor relative changes in glacier melting in response to one-time weather events, seasonal changes, and long-term climate trends. Because sound travels long distances underwater, recording microphones can be placed a safe distance from unstable ice sheets. The audio recordings would complement other measurements of ice melt, such as time-lapse photography and salinity readings.

Presentation 4aUW4, "Underwater sound radiated by bubbles released by melting glacier ice," will take place on Thursday, Dec. 5, 2013, at 9:55 a.m. The abstract describing this work can be found here: http://asa2013.abstractcentral.com/planner.jsp.

ABOUT THE MEETING

The 166th Meeting of the Acoustical Society of America (ASA), to be held Dec. 2-6, 2013, at the Hilton San Francisco Union Square, will feature more than 1,100 presentations on sound and its applications in physics, engineering, and medicine. The meeting program can be accessed at: http://asa2013.abstractcentral.com/planner.jsp.
OTHER USEFUL LINKS

Main meeting website: http://acousticalsociety.org/meetings/san_francisco Hotel site: http://www.sanfrancisco.hilton.com ASA World Wide Press Room: http://www.acoustics.org/press
WORLD WIDE PRESS ROOM

ASA's World Wide Press Room (http://www.acoustics.org/press) will feature dozens of newsworthy stories through lay-language papers, which are 300-1200 word summaries of presentations written by scientists for a general audience and accompanied by photos, audio, and video.
PRESS REGISTRATION

We will grant free registration to credentialed journalists and professional freelance journalists. If you are a reporter and would like to attend, contact Jason Bardi (jbardi@aip.org, 240-535-4954), who can also help with setting up interviews and obtaining images, sound clips, or background information.
LIVE MEDIA WEBCAST

A press briefing featuring a selection of newsworthy research will be webcast live from the conference. Date and time to be announced. To register, visit http://www.aipwebcasting.com.
ABOUT THE ACOUSTICAL SOCIETY OF AMERICA

The Acoustical Society of America (ASA) is the premier international scientific society in acoustics devoted to the science and technology of sound. Its 7,000 members worldwide represent a broad spectrum of the study of acoustics. ASA publications include The Journal of the Acoustical Society of America (the world's leading journal on acoustics), Acoustics Today magazine, ECHOES newsletter, books, and standards on acoustics. The society also holds two major scientific meetings each year. For more information about ASA, visit our website at http://www.acousticalsociety.org.

This news release was prepared for the Acoustical Society of America (ASA) by the American Institute of Physics (AIP).

Contacts:
Jason Socrates Bardi
jbardi@aip.org
(240) 535-4954
Jennifer Lauren Lee
jlee@aip.org
(301) 209-3099

Jennifer Lauren Lee | EurekAlert!
Further information:
http://www.aip.org
http://www.acousticalsociety.org

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>