Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Next generation nanofilms created

15.04.2009
With the human genome in hand, biochemists have cataloged the 3-D structures of thousands of proteins isolated from living cells.

But one important class of proteins -- those stuck in the cell membranes -- has proven difficult to extract and study in 3-D crystals. Now an international team of scientists has developed a way to train such molecules to line up neatly on the surface of water in thin, tissue-like layers called nanofilms.

This technique should allow biochemists to better see and study the molecules and may lead to a new generation of molecular electronics and ultra-thin materials only one molecule thick.

"To the best of our knowledge, this is the first time aligned films less than a nanometer thick have been produced," say Iftach Nevo, a Marie Curie fellow at the University of Aarhus in Denmark, and Leslie Leiserowitz of the Weizmann Institute of Science in Israel. Together with their colleagues at these institutions and at the Max-Planck Institute of Colloids and Interfaces in Germany and Northwestern University in Evanston, they describe their research in the 14 April 2009 issue of The Journal of Chemical Physics, published by the American Institute of Physics.

One way of creating a nanofilm is to build it on the surface of water. First, the building blocks of the film are dissolved in a volatile substance. When a drop of this solution is splashed onto water, the solvent evaporates. The building blocks left floating on the water interact with each other and spontaneously come together -- like soap scum in a bathtub -- to create a thin crystalline layer.

The shortcoming of this technique is that the thin crystals in the film created will be a mess. Like a mob in a dance club, molecules floating on a surface tend to spin around chaotically with little regard for order. Different patches of molecules will point different, random directions. Because the orientation of these molecules dictates the electrical, magnetic, and optical properties of the final film, these jumbled regions are difficult to develop into useful technologies. They are also difficult to analyze using imaging techniques like X-ray diffraction.

To force the molecules to line up, the team blasted them with nanosecond laser pulses. These pulses create an electric field that interacts with the molecules, rotating them slowly. The electric field associated with these laser pulses is polarized, filtered so that all of the light waves vibrate in the same direction. Molecules caught in the laser feel most stable when they line up along this direction, a process analogous to the needle in a compass swinging to line up with the Earth's magnetic field. Eventually, this forms an aligned film with long range order.

The technique has not been completely perfected yet. Its success rate is about 30 percent, but the group believes that a better understanding of what is happening during the evaporation process and how the molecules interact with each other just before solidifying into a film will improve the efficiency.

When these molecules line up in a stable 2-D layer, their structures can be seen with X-ray imaging techniques normally used on 3-D crystals. "Alignment should enhance the X-ray diffraction intensity by more than two orders of magnitude allowing more detailed structure elucidations," say Nevo and Leiserowitz. The technique could be useful for studying molecules that cannot be easily crystallized in three dimensions -- cell membrane proteins are only one example.

It could also be useful for creating 3-D crystals with aligned structures. The 2-D layer can be used to seed the growth of these crystals, providing a stage on which this growth can be monitored using X-ray diffraction.

Another application is molecular electronics, like field-effect transistors, that require ordered molecules. Also interesting is an emerging class of solar cell technologies that are trying to copy nature by reverse-engineering photosynthesis. The ability to align the molecules in these devices will be important to their effectiveness, explains team member Tamar Seideman of Northwestern University.

Because the technique should work with a variety of molecules, it may pave the way for brand new kinds of self-assembling nanomaterials. "The international team that produced this paper is outstanding, and this is one of those papers that will likely spawn a number of novel applications that haven't been discovered yet," says Edward Castner of Rutgers University, Associate Editor for The Journal of Chemical Physics.

The article "Laser-Induced Self Assembly on Water Surfaces" by Iftach Nevo et al will be published online on April 14, 2009. Journalists can obtain a free copy by emailing dpowell@aip.org.

ABOUT THE JOURNAL

The Journal of Chemical Physics, published by the American Institute of Physics (AIP), contains concise and definitive reports of significant research in methods and applications of chemical physics. Innovative research in traditional areas of chemical physics such as spectroscopy, kinetics, statistical mechanics, and quantum mechanics continue to be areas of interest to readers of JCP. In addition, newer areas such as polymers, materials, surfaces/interfaces, information theory, and systems of biological relevance are of increasing importance. See: http://jcp.aip.org.

ABOUT AIP

The American Institute of Physics (AIP) is a not-for-profit membership corporation chartered in 1931 for the purpose of advancement and diffusion of the knowledge of physics and its application to human welfare. An umbrella organization for 10 Member Societies, AIP represents over 134,000 scientists, engineers and educators and is one of the world's largest publishers of physics journals. A total-solution provider of publishing services, AIP also publishes 12 journals of its own (many of which have the highest impact factors in their category), two magazines, and the AIP Conference Proceedings series. Its online publishing platform Scitation (registered trademark) hosts more than 1,000,000 articles from more than 175 scholarly journals, as well as conference proceedings, and other publications of 25 learned society publishers.

Devin Powell | EurekAlert!
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>