Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fusion Facilities Review Panel assesses the facilities of the European Research Programme

03.12.2008
Top grades have been awarded to the ASDEX Upgrade and Wendelstein 7-X devices at Max Planck Institute of Plasma Physics (IPP) in Garching and Greifswald by the Fusion Facilities Review Panel of the EU, which has just submitted its final report.

This independent panel of experts was appointed by the EU Commission to identify the research objectives needed to realise a fusion power plant. Then it had to ascertain which experimental devices in the European Fusion Research Programme can contribute to these objectives. All devices – existing, under construction or planned – had to be assessed according to their relevant capabilities.

The objective of fusion research is to derive energy from fusion of atomic nuclei, as happens in the sun. To ignite the fusion fire in a power plant one has to succeed in confining the fuel – ionised hydrogen gas of extremely low density, called plasma – keep it stable and thermally insulated, and heat it to temperatures of over 100 million degrees. The members of the Fusion Facilities Review Panel** emphasised the special situation of fusion research as a long-term pursuit with a specific objective and stated that they were impressed by the progress achieved: nuclear fusion has prospects of providing a new, almost inexhaustible energy source favourable to the climate and environment. Achieving efficient power production presents, however, major challenges. The report now submitted, “R&D Needs and Required Facilities for the Development of Fusion as an Energy Source”, reviews the status of fusion research and the requirements to be met on the way to a fusion power plant.

The key device in the coming decades will be the ITER international test reactor, now being built at Cadarache, France, as a joint operation involving Europe, Japan, Russia, USA, China, South Korea and India. ITER is to demonstrate that a fusion plasma yielding energy is possible. With a fusion power of 500 megawatts it is to produce ten times as much power as is needed to heat the plasma. Properly preparing the experiments in the large-scale device and subsequently attaining the greatest possible scientific yield call for support from smaller, more specialised and more flexible fusion devices, and also from technological and computing facilities. In a “schedule” extending to the year 2035, i.e. till the planned start of construction of the DEMO demonstration power plant to follow ITER, the panel graded the European facilities – existing, under construction or planned – according to their usefulness for ITER and DEMO.

The JET (Joint European Torus) large-scale experiment in Culham, UK, tops the list as the most important “satellite” device for preparing for ITER. With a plasma volume of 80 cubic metres – ten times smaller than the ITER plasma – the JET experiment conducted jointly by all the European fusion laboratories is at present the world’s largest and most powerful device. In a mode of operation developed at IPP the JET team succeeded in 1997 in generating 16 megawatts of fusion power, this being 65 per cent of the heating power input. JET is now being modified for objectives relevant to ITER and should, according to the panel, continue operation till at least 2014/15. Major contributions are also expected from the similarly sized JT-60SA in Japan. This device is now being modified in a Japanese-European cooperation and is scheduled to go into operation in 2016. Unlike JET with its copper magnet coils, JT-60SA will be fitted with superconducting magnet coils. This allows investigations with much longer plasma pulses.

Of the twelve medium-sized European devices assessed, the panel considered Garching’s ASDEX Upgrade device to be “most suited for efficient support of ITER and the ITER satellites”. The panel concluded that ASDEX Upgrade is capable of covering a wide range of topics to accompany the construction of ITER till 2018 and then also support its operation for another ten years. In view of the similar plasma shapes with different sizes of plasma going up the ladder ASDEX Upgrade – JET – ITER, comparative experiments promise particularly fruitful results. If DEMO continues this line of development, then ASDEX Upgrade in its size category is also considered by the panel to be the closest device to DEMO in Europe.

Another line of development is to be pursued by Wendelstein 7-X. This device, now being built at the Greifswald branch of IPP, is of the alternative stellarator type. Its objective is to demonstrate the power plant potential of the stellarator concept. Accordingly, the panel assesses its relevance to DEMO as “very high”. Classifying it overall as of “medium” importance for ITER the panel went on to state that Wendelstein 7-X with its superconducting magnet coils could primarily contribute important know-how on the continuous mode of operation.

Besides IPP’s two plasma devices, the grade of “very high priority” was also awarded to the test rigs planned for material development, plasma heating and superconducting magnets as well as to a powerful computer for numerical modelling of the plasma behaviour. The panel made the overall recommendation to the European Fusion Research Programme that the present division of labour with its highly networked character be maintained and expanded. Furthermore, the training of the specialists needed for the research programme was emphasised as a particularly important task of the European laboratories.

**Fusion Facilities Review Panel
The Fusion Facilities Review Panel, appointed in December 2007 at the beginning of the Seventh European Research Framework Programme (2007 - 2013) by the EU Commission, comprised five European members outside the fusion research community and four non-European fusion experts. Under the chairmanship of Prof. Dr. Thomas Hartkopf, head of the Department of Regenerative Energies at the Institute for Electrical Energy Systems of TU Darmstadt, the panel terminated its work in October 2008 after several meetings, video conferences and laboratory visits as well as the study of numerous documents by unanimously approving the final report now submitted, “R&D Needs and Required Facilities for the Development of Fusion as an Energy Source”.

Isabella Milch | alfa
Further information:
http://www.ipp.mpg.de/ippcms/de/presse/pi/16_08_pi.html

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>