Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fuel for the black hole

16.05.2012
An international research team led by Gerd Weigelt from the Max-Planck-Institut für Radioastronomie in Bonn reports on high-resolution studies of an active galactic nucleus.

The use of near-infrared interferometry allowed the team to resolve a ring-shaped dust distribution (generally called "dust torus") in the inner region of the nucleus of the active galaxy NGC 3783. This method is able to achieve an angular resolution equivalent to the resolution of a telescope with a diameter of 130 Meters. The resolved dust torus probably represents the reservoir of gaseous and dusty material that "feeds" the hot gas disk ("accretion disk") and the supermassive black hole in the center of this galaxy.


Artist's view of a dust torus surrounding the accretion disk and the central black hole in active galactic nuclei. Credit: NASA E/PO - Sonoma State University, Aurore Simonnet (http://epo.sonoma.edu/)


The Very Large Telescope Interferometer of the European Southern Observatory. Photo: Gerd Weigelt/MPIfR

Extreme physical processes occur in the innermost regions of galactic nuclei. Supermassive black holes were discovered in many galaxies. The masses of these black holes are often a millionfold larger than the mass of our sun. These central black holes are surrounded by hot and bright gaseous disks, called "accretion disks". The emitted radiation from these accretion disks is probably generated by infalling material. To maintain the high luminosity of the accretion disk, fresh material has to be permanently supplied. The dust tori (see Fig. 1) surrounding the accretion disks are most likely the reservoir of the material that flows through the accretion disk and finally "feeds" the growing black hole.

Observations of these dust tori are very challenging since their sizes are very small. A giant telescope with a mirror diameter of more than 100 Meters would be able to provide the required angular resolution, but unfortunately telescopes of this size will not be available in the near future. This raises the question: Is there an alternative approach that provides the high resolution required?

The solution is to simultaneously combine ("interfere") the light from two or more telescopes since these multi-telescope images, which are called interferograms, contain high-resolution information. In the reported NGC 3783 observations, the AMBER interferometry instrument was used to combine the infrared light from two or three telescopes of ESO's Very Large Telescope Interferometer (VLTI, see Fig. 2). This interferometric method is able to achieve an extreme angular resolution that is proportional to the distance between the telescopes. Since the largest distance between the four telescopes of the VLTI is 130 Meters, an angular resolution is obtained that is as high as the theoretical resolution of a telescope with a mirror diameter of 130 Meters - a resolution that is 15 times higher than the resolution of one of the VLTI telescopes, which have a mirror diameter of 8 Meters.

"The ESO VLTI provides us with a unique opportunity to improve our understanding of active galactic nuclei,", says Gerd Weigelt from the Max-Planck-Institut für Radioastronomie in Bonn. "It allows us to study fascinating physical processes with unprecedented resolution over a wide range of infrared wavelengths. This is needed to derive physical properties of these sources."

And Makoto Kishimoto emphasizes: "We hope to obtain more detailed information in the next few years by additional observations at shorter wavelengths, with longer baselines, and with higher spectral resolution. Most importantly, in a few years, two further interferometric VLTI instruments will be available, which can provide complementary information."

To resolve the nucleus of the active galaxy NGC 3783, the research team recorded thousands of two- and three-telescope interferograms with the VLTI. The telescope distances were in the range of 45 to 114 Meters. The evaluation of these interferograms allowed the team to derive the radius of the compact dust torus in NGC 3783. A very small angular torus radius of 0.74 milli-arcsecond was measured, which corresponds to a radius of 0.52 light years. These near-infrared radius measurements, together with previously obtained mid-infrared measurements, allowed the team to derive important physical parameters of the torus of NGC 3783.

"The high resolution of the VLTI is also important for studying many other types of astrophysical key objects", underlines Karl-Heinz Hofmann. "It is clear that infrared interferometry will revolutionize infrared astronomy in a similar way as radio interferometry has revolutionized radio astronomy."

The research team comprises scientists from the Universities of Florence, Grenoble, Nice, Santa Barbara, and from the MPI für Radioastronomie.

Contact:

Prof. Dr. Gerd Weigelt,
Head of Research group "Infrared Astronomy",
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49(0)228-525-243
E-mail: gweigelt@mpifr-bonn.mpg.de
Dr. Makoto Kishimoto,
Max-Planck-Institut für Radioastronomie:
Fon: +49(0)228-525-189
E-mail: mk@mpifr-bonn.mpg.de
Dr. Norbert Junkes,
Press and Public Outreach,
Max-Planck-Institut für Radioastronomie:
Fon: +49(0)228-525-399
E-mail: njunkes@mpifr-bonn.mpg.de

Norbert Junkes | Max-Planck-Institut
Further information:
http://www.mpifr-bonn.mpg.de
http://www.mpifr-bonn.mpg.de/public/pr/pr-ngc3783-may2012-en.html

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>