Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Frequency combs for sniffing molecules

11.01.2013
Tiny crystalline resonators produce mid-infrared frequency combs for fingerprinting of molecules.

Most molecules, including those of importance in medical diagnostics or pollution monitoring, have characteristic “fingerprints” in the mid-infrared spectral region. However, state-of-the-art mid-infrared frequency comb techniques require systems that are often costly and limited in their applications.

In an article just published in Nature Communications (January 8th, 2013), scientists of the Laser Spectroscopy Division of the Max-Plank-Institute of Quantum Optics, in a collaboration with the Ecole Polytechnique de Lausanne (Switzerland), the Ludwig-Maximilians-Universität Munich, the Menlo Systems GmbH and the Institut des Sciences Moléculaires d’Orsay (France), have demonstrated the generation of mid-infrared frequency combs with small crystalline micro-resonators. Such miniaturized instruments, which can detect and characterize such molecules quickly and with high sensitivity, could revolutionize many areas of science and technology.

Optical frequency comb generators are coherent light sources, which produce a “comb” of many precisely evenly spaced spectral lines. During the last decade, such combs have revolutionized the art of measuring the frequency of light, as recognized in 2005 by the award of the Physics Nobel Prize to Prof. Theodor W. Hänsch. Today frequency combs are becoming enabling tools for new and unexpected applications. In particular, frequency combs are strongly impacting molecular spectroscopy by dramatically improving the recording speed, the resolution and the accuracy of Fourier spectrometers. The mid-infrared spectral range, also called molecular fingerprint region, is of primary importance to molecular physics. However, as reviewed in an article* published in the July 2012 issue of Nature Photonics, emerging mid-infrared frequency comb techniques still need considerable improvements: the systems are often based on nonlinear frequency conversion of near-infrared laser sources, which makes them bulky, and their use is limited to specialists.

The new technique developed by a team of scientists at MPQ avoids these obstacles. Here, mid-infrared frequency comb radiation is generated by exciting whispering gallery modes in a small toroidal monolithic resonator. A crystalline micro-resonator with a quality-factor exceeding 109 is pumped by a continuous-wave laser. By a nonlinear process called four-wave mixing, it produces a broad comb spectrum consisting of discrete lines spaced by 100 GHz at mid-infrared wavelengths near 2.5 µm. “The remarkable characteristics of such comb generators are their small size, large line-spacing, high power per comb line, and efficient conversion,” says Dr. Christine Wang, the post-doc who has performed the experiment. “An appropriate choice of the material – here magnesium fluoride – and proper engineering are crucial to realize broad spectral span and low-phase noise, as required for frequency comb operation.” Such miniaturized sources hold much promise for on-chip frequency-comb spectrometers. The spectrum of the fundamental vibrations of liquid phase samples might be measured within a few nanoseconds with a similar refresh time!

*A. Schliesser, N. Picqué, T.W. Hänsch, Mid-infrared frequency combs, Nature Photonics 6, 440-449 (2012)

Original publication:
C.Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T.W. Hänsch, N. Picqué and T.J. Kippenberg
Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators
Nature Communications 4, Article number: 1345, Issue of January 8th, 2013.
DOI: 10.1038/ncomms2335
Contact:
Prof. Dr. Theodor W. Hänsch
Max-Planck-Institute of Quantum Optics
Hans Kopfermann-Strasse 1
85748 Garching
Phone: +49 (0) 89 32905 -712
E-mail: t.w.haensch@mpq.mpg.de
Dr. Olivia Meyer-Streng
Press & Public Relations
Max-Planck-Institute of Quantum Optics
Phone: +49 (0) 89 32 905 -213
Fax: +49 (0) 89 32 905 -200
E-mail: olivia.meyer-streng@mpq.mpg.de
Dr. Nathalie Picqué
Max-Planck-Institute of Quantum Optics & Centre National de la Recherche
Scientifique
Phone: +49 (0) 89 32905 -290
E-mail: nathalie.picque@mpq.mpg.de
Prof. Tobias J. Kippenberg
Ecole Polytechnique Fédérale de Lausanne
Laboratory of Photonics and Quantum Measurements
Lausanne, Switzerland
Email: tobias.kippenberg@epfl.ch

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Further information:
http://www.mpq.mpg.de

More articles from Physics and Astronomy:

nachricht APEX takes a glimpse into the heart of darkness
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>