Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Follow the radio waves to exomoons, UT Arlington physicists say

12.08.2014

Scientists hunting for life beyond Earth have discovered more than 1,800 planets outside our solar system, or exoplanets, in recent years, but so far, no one has been able to confirm an exomoon. Now, physicists from The University of Texas at Arlington believe following a trail of radio wave emissions may lead them to that discovery.

Scientists hunting for life beyond Earth have discovered more than 1,800 planets outside our solar system, or exoplanets, in recent years, but so far, no one has been able to confirm an exomoon. Now, physicists from The University of Texas at Arlington believe following a trail of radio wave emissions may lead them to that discovery.


Schematic of a plasma torus around an exoplanet, which is created by the ions injected from an exomoon's ionosphere into the planet's magnetosphere.

Their recent findings, published in the Aug. 10 issue of The Astrophysical Journal, describe radio wave emissions that result from the interaction between Jupiter’s magnetic field and its moon Io. They suggest using detailed calculations about the Jupiter/Io dynamic to look for radio emissions that could indicate moons orbiting an exoplanet.

“This is a new way of looking at these things,” said Zdzislaw Musielak, professor of physics in the UT Arlington College of Science and co-author of the new paper. “We said, ‘What if this mechanism happens outside of our solar system?’ Then, we did the calculations and they show that actually there are some star systems that if they have moons, it could be discovered in this way.”

Joaquin Noyola, a Ph.D. graduate student in Musielak’s research group, is lead author on the new paper and Suman Satyal, a Ph.D. graduate student in the same group, is another co-author. It is titled “Detection of Exomoons Through Observation of Radio Emissions.”

The idea of life thriving on a moon has inspired science fiction, such as Star Wars’ furry Ewoks. Scientists even think some moons in our own Solar System ‑ Saturn’s Enceladus and Jupiter’s Europa ‑ are good candidates for supporting life based on their atmospheric composition, potential for water and distance from the sun.

The difficulty comes in trying to spot an exomoon using existing methods, Musielak said. NASA’s Kepler telescope, for example, measures changes in brightness from a star to identify transits, or passes, by an orbiting planet. Reliably isolating whether a moon is part of that transit hasn’t been possible, so far.

The UT Arlington team builds on earlier theories about using radio wave observations to discover exoplanets, but applies it in a new way. Their focus is on Io and its ionosphere, a charged upper atmosphere that is likely created by the moon’s extremely active volcanoes.

During its orbit, Io’s ionosphere interacts with Jupiter’s magnetosphere, a layer of charged plasma that protects the planet from radiation, to create a frictional current that causes radio wave emissions. These are called “Io-controlled decametric emissions” and the researchers believe finding similar emissions near known exoplanets could be key to predicting where other moons exist.

Noyola said it is important to note when modeling the Io example to other planet/moon pairs that other moons do not necessarily have to have the volcanic activity of Io to have an ionosphere.

“Larger moons – such as Saturn’s largest moon, Titan - can sustain a thick atmosphere, and that could also mean they have an ionosphere. So volcanic activity isn’t a requirement,” Noyola said.

The paper also addresses Alfvén waves that are produced by the Io and Jupiter magnetosphere interaction and says those waves also could be used to spot exomoons in similar situations. Alfvén waves are the rippling of the plasma in a magnetic field, first described by Hannes Alfvén in the early 1940s.

In their paper, the UT Arlington team even pinpointed two exoplanets where they are “cautiously optimistic” that the observational community could apply the study’s calculations to search for exomoons the size of our moon with future, more sensitive radio telescopes – Gliese 876b, which is about 15 light years way, and Epsilon Eridani b, which is about 10.5 light years away. Current telescopes – such as the National Science Foundation-supported Long Wavelength Array – could be used to detect exomoons in closer planetary systems, with the bigger moons holding better the possibilities of detection, Satyal said.

“Most of the detected exoplanets are gas giants, many of which are in the habitable zone,” he said. “These gas giants cannot support life, but it is believed that the exomoons orbiting these planets could still be habitable.”

About UT Arlington

The University of Texas at Arlington is a comprehensive research institution and the second largest institution in The University of Texas System. The Chronicle of Higher Education ranked UT Arlington as the seventh fastest-growing public research university in 2013. U.S. News & World Report ranks UT Arlington fifth in the nation for undergraduate diversity. Visit www.uta.edu to learn more. Follow #UTAdna on Twitter.

The University of Texas at Arlington is an Equal Opportunity and Affirmative Action employer

Traci Peterson | Eurek Alert!
Further information:
http://www.uta.edu/news/releases/2014/08/exomoon-research.php

More articles from Physics and Astronomy:

nachricht Hot Science of the Cold Universe
10.02.2016 | Max-Planck-Institut für Radioastronomie

nachricht Flow phenomena on solid surfaces: Physicists highlight key role played by boundary layer velocity
10.02.2016 | Universität des Saarlandes

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye ground control: autonomous nanosatellites

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into...

Im Focus: Flow phenomena on solid surfaces: Physicists highlight key role played by boundary layer velocity

Physicists from Saarland University and the ESPCI in Paris have shown how liquids on solid surfaces can be made to slide over the surface a bit like a bobsleigh on ice. The key is to apply a coating at the boundary between the liquid and the surface that induces the liquid to slip. This results in an increase in the average flow velocity of the liquid and its throughput. This was demonstrated by studying the behaviour of droplets on surfaces with different coatings as they evolved into the equilibrium state. The results could prove useful in optimizing industrial processes, such as the extrusion of plastics.

The study has been published in the respected academic journal PNAS (Proceedings of the National Academy of Sciences of the United States of America).

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

Im Focus: Superconductivity: footballs with no resistance

Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications.

Superconductors have long been confined to niche applications, due to the fact that the highest temperature at which even the best of these materials becomes...

Im Focus: Wbp2 is a novel deafness gene

Researchers at King’s College London and the Wellcome Trust Sanger Institute in the United Kingdom have for the first time demonstrated a direct link between the Wbp2 gene and progressive hearing loss. The scientists report that the loss of Wbp2 expression leads to progressive high-frequency hearing loss in mouse as well as in two clinical cases of children with deafness with no other obvious features. The results are published in EMBO Molecular Medicine.

The scientists have shown that hearing impairment is linked to hormonal signalling rather than to hair cell degeneration. Wbp2 is known as a transcriptional...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

From intelligent knee braces to anti-theft backpacks

26.01.2016 | Event News

 
Latest News

Chemical cages: New technique advances synthetic biology

10.02.2016 | Life Sciences

Engineering researchers use laser to 'weld' neurons

10.02.2016 | Power and Electrical Engineering

Drones Learn To Search Forest Trails for Lost People

10.02.2016 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>