Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Follow the radio waves to exomoons, UT Arlington physicists say

12.08.2014

Scientists hunting for life beyond Earth have discovered more than 1,800 planets outside our solar system, or exoplanets, in recent years, but so far, no one has been able to confirm an exomoon. Now, physicists from The University of Texas at Arlington believe following a trail of radio wave emissions may lead them to that discovery.

Scientists hunting for life beyond Earth have discovered more than 1,800 planets outside our solar system, or exoplanets, in recent years, but so far, no one has been able to confirm an exomoon. Now, physicists from The University of Texas at Arlington believe following a trail of radio wave emissions may lead them to that discovery.


Schematic of a plasma torus around an exoplanet, which is created by the ions injected from an exomoon's ionosphere into the planet's magnetosphere.

Their recent findings, published in the Aug. 10 issue of The Astrophysical Journal, describe radio wave emissions that result from the interaction between Jupiter’s magnetic field and its moon Io. They suggest using detailed calculations about the Jupiter/Io dynamic to look for radio emissions that could indicate moons orbiting an exoplanet.

“This is a new way of looking at these things,” said Zdzislaw Musielak, professor of physics in the UT Arlington College of Science and co-author of the new paper. “We said, ‘What if this mechanism happens outside of our solar system?’ Then, we did the calculations and they show that actually there are some star systems that if they have moons, it could be discovered in this way.”

Joaquin Noyola, a Ph.D. graduate student in Musielak’s research group, is lead author on the new paper and Suman Satyal, a Ph.D. graduate student in the same group, is another co-author. It is titled “Detection of Exomoons Through Observation of Radio Emissions.”

The idea of life thriving on a moon has inspired science fiction, such as Star Wars’ furry Ewoks. Scientists even think some moons in our own Solar System ‑ Saturn’s Enceladus and Jupiter’s Europa ‑ are good candidates for supporting life based on their atmospheric composition, potential for water and distance from the sun.

The difficulty comes in trying to spot an exomoon using existing methods, Musielak said. NASA’s Kepler telescope, for example, measures changes in brightness from a star to identify transits, or passes, by an orbiting planet. Reliably isolating whether a moon is part of that transit hasn’t been possible, so far.

The UT Arlington team builds on earlier theories about using radio wave observations to discover exoplanets, but applies it in a new way. Their focus is on Io and its ionosphere, a charged upper atmosphere that is likely created by the moon’s extremely active volcanoes.

During its orbit, Io’s ionosphere interacts with Jupiter’s magnetosphere, a layer of charged plasma that protects the planet from radiation, to create a frictional current that causes radio wave emissions. These are called “Io-controlled decametric emissions” and the researchers believe finding similar emissions near known exoplanets could be key to predicting where other moons exist.

Noyola said it is important to note when modeling the Io example to other planet/moon pairs that other moons do not necessarily have to have the volcanic activity of Io to have an ionosphere.

“Larger moons – such as Saturn’s largest moon, Titan - can sustain a thick atmosphere, and that could also mean they have an ionosphere. So volcanic activity isn’t a requirement,” Noyola said.

The paper also addresses Alfvén waves that are produced by the Io and Jupiter magnetosphere interaction and says those waves also could be used to spot exomoons in similar situations. Alfvén waves are the rippling of the plasma in a magnetic field, first described by Hannes Alfvén in the early 1940s.

In their paper, the UT Arlington team even pinpointed two exoplanets where they are “cautiously optimistic” that the observational community could apply the study’s calculations to search for exomoons the size of our moon with future, more sensitive radio telescopes – Gliese 876b, which is about 15 light years way, and Epsilon Eridani b, which is about 10.5 light years away. Current telescopes – such as the National Science Foundation-supported Long Wavelength Array – could be used to detect exomoons in closer planetary systems, with the bigger moons holding better the possibilities of detection, Satyal said.

“Most of the detected exoplanets are gas giants, many of which are in the habitable zone,” he said. “These gas giants cannot support life, but it is believed that the exomoons orbiting these planets could still be habitable.”

About UT Arlington

The University of Texas at Arlington is a comprehensive research institution and the second largest institution in The University of Texas System. The Chronicle of Higher Education ranked UT Arlington as the seventh fastest-growing public research university in 2013. U.S. News & World Report ranks UT Arlington fifth in the nation for undergraduate diversity. Visit www.uta.edu to learn more. Follow #UTAdna on Twitter.

The University of Texas at Arlington is an Equal Opportunity and Affirmative Action employer

Traci Peterson | Eurek Alert!
Further information:
http://www.uta.edu/news/releases/2014/08/exomoon-research.php

More articles from Physics and Astronomy:

nachricht Suzaku, Herschel link a black-hole 'wind' to a galactic gush of star-forming gas
26.03.2015 | NASA/Goddard Space Flight Center

nachricht Tiny Bio-Robot Is a Germ Suited-Up with Graphene Quantum Dots
25.03.2015 | University of Illinois at Chicago

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Experiment Provides the Best Look Yet at 'Warm Dense Matter' at Cores of Giant Planets

In an experiment at the Department of Energy's SLAC National Accelerator Laboratory, scientists precisely measured the temperature and structure of aluminum as...

Im Focus: Energy-autonomous and wireless monitoring protects marine gearboxes

The IPH presents a solution at HANNOVER MESSE 2015 to make ship traffic more reliable while decreasing the maintenance costs at the same time. In cooperation with project partners, the research institute from Hannover, Germany, has developed a sensor system which continuously monitors the condition of the marine gearbox, thus preventing breakdowns. Special feature: the monitoring system works wirelessly and energy-autonomously. The required electrical power is generated where it is needed – directly at the sensor.

As well as cars need to be certified regularly (in Germany by the TÜV – Technical Inspection Association), ships need to be inspected – if the powertrain stops...

Im Focus: 3-D satellite, GPS earthquake maps isolate impacts in real time

Method produced by UI researcher could improve reaction time to deadly, expensive quakes

When an earthquake hits, the faster first responders can get to an impacted area, the more likely infrastructure--and lives--can be saved.

Im Focus: Atlantic Ocean overturning found to slow down already today

The Atlantic overturning is one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards. Also known as the Gulf Stream system, it is responsible for the mild climate in northwestern Europe. 

Scientists now found evidence for a slowdown of the overturning – multiple lines of observation suggest that in recent decades, the current system has been...

Im Focus: Robot inspects concrete garage floors and bridge roadways for damage

Because they are regularly subjected to heavy vehicle traffic, emissions, moisture and salt, above- and underground parking garages, as well as bridges, frequently experience large areas of corrosion. Most inspection systems to date have only been capable of inspecting smaller surface areas.

From April 13 to April 17 at the Hannover Messe (hall 2, exhibit booth C16), engineers from the Fraunhofer Institute for Nondestructive Testing IZFP will be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference On Regenerative Medicine 2015: Registration And Abstract Submission Now Open

25.03.2015 | Event News

University presidents from all over the world meet in Hamburg

19.03.2015 | Event News

10. CeBiTec Symposium zum Big Data-Problem

17.03.2015 | Event News

 
Latest News

Surface-modified nanoparticles endow coatings with combined properties

26.03.2015 | Trade Fair News

Novel sensor system provides continuous smart monitoring of machinery and plant equipment

26.03.2015 | Trade Fair News

Common bacteria on verge of becoming antibiotic-resistant superbugs

26.03.2015 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>