Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flawed diamonds: Gems for new technology

09.10.2013
Using ultra-fast laser pulses, researchers have made the first detailed observation of how energy travels through diamonds containing nitrogen-vacancy centers -- promising candidates for a variety of technological advances such as quantum computing

A team of researchers led by University of Arizona assistant professor Vanessa Huxter has made the first detailed observation of how energy travels through diamonds that contain nitrogen-vacancy centers – defects in which two adjacent carbon atoms in the diamond's crystal structure are replaced by a single nitrogen atom and an empty gap.


Vanessa Huxter uses ultra-fast laser pulses to study physical processes in diamonds that happen on a time scale of a few nanoseconds -- billionths of a second.

Credit: Beatriz Verdugo/UANews

These "flaws" result in unexpected and attractive properties that have put such diamonds in the spotlight as promising candidates for a variety of technological advances.

The findings, published online in Nature Physics, could help scientists better understand the properties of these diamonds, which have potential applications ranging from quantum computing to the imaging of individual atoms in molecules.

Defect centers are locations in the otherwise repetitive lattice of carbon atoms where other elements have taken the spot of carbon atoms. Such defects create, for example, canary diamonds in which nitrogen atoms have replaced carbon atoms. In the case of a nitrogen vacancy, a nitrogen atom sits next to an empty slot where a carbon atom is missing.

"Some of these defects have interesting optical and electronic properties," said Huxter, who recently joined the UA's Department of Chemistry and Biochemistry and led the research during a postdoctoral fellowship funded by the Natural Sciences and Engineering Research Council of Canada. Huxter did the research with co-authors Graham Fleming and Dmitry Budker at the U.S. Department of Energy's Lawrence Berkeley National Laboratory and the University of California, Berkeley.

Huxter said because the nitrogen-vacancy defects can be manipulated with optical methods such as lasers, they could be used for computing, data storage, sensing and even advanced imaging techniques capable of revealing the structure of molecules.

"In order to use this system for these applications, we have to understand its fundamental properties," said Huxter, whose team is the first to study the ultrafast dynamics in these crystals in real time. "To use these systems for quantum computing, you want to have to some idea of what we call vibrational modes, because they determine the local environment and may possibly be used for information processing."

To understand what that means, one has to picture the crystal structure of a diamond: a three-dimensional lattice of carbon atoms forming a highly ordered and repetitive structure. But the atoms are not glued into place. Rather, they vibrate back and forth as if connected by tiny springs. Wherever a nitrogen-vacancy defect interrupts the uniform carbon lattice, the vibrational properties change in ways that can be manipulated, for example by laser pulses.

"We use laser light to see what is happening in the system," Huxter said. "When we hit these things with ultrafast pulses, it's like hitting them with a hammer. We put a lot of energy into the system, and watch as that energy flows through it."

The laser pulse knocks the electrons in the nitrogen-vacancy centers into a higher level of energy, which physicists call the excited state. Over time, the electrons fall back into their ground state, in a process called relaxation, while dissipating the energy into their surroundings.

To watch how vibrations influence the ultrafast relaxation of the system, Huxter's team used ultrafast laser pulses, because the relaxation occurs on a time scale of a few nanoseconds – billionths of a second.

Exactly how that energy moves through the crystal and how it influences the vibrations around the nitrogen-vacancy centers is crucial to figuring out how to take advantage of its properties, but nobody had ever been able to observe this process before.

"This is the first time we have been able to directly observe the vibrational spectrum of the system in real time," Huxter said.

With her team, she employed two-dimensional electronic spectroscopy, basically a way of creating two-dimensional correlation "maps" that allow the researchers to watch the system as it relaxes to the ground state.

"Think of it as ultra-high-speed photography to freeze the action on a scale of atoms and molecules," Huxter said. "We can watch the energy flow through the system in real time, and take snapshots along the way. We can see where the energy is going in and where it is coming out."

In the world of ultrafast spectroscopy, which is reminiscent of the first high-speed photography developed by Edward Muybridge in the early 20th century to freeze the action of galloping horses, "nanoseconds are like a million years," Huxter said, thanks to laser pulses lasting only femtoseconds. A femtosecond is one millionth of one billionth of a second. "In our experiments we were able to observe vibrations local to the defect with femtosecond time resolution. Being able to directly follow these vibrations led to some surprising new results including that these vibrations are quantum mechanically coherent for thousands of femtoseconds."

"The question we ask is, what happens when you start replacing the atoms in the crystal?" Huxter explained. "Will you get a change in the elastic properties? Each nitrogen-vacancy center is like a softer region you can poke at. They absorb the laser energy where there was previously no absorption and we see all these extra vibrational modes we don't see in the rest of the crystal."

"In our scenario, the diamond is like a clear window. We look straight through it and only see the defects. We tailor our laser pulse to the absorption of the defects."

Research publication in Nature Physics: http://www.nature.com/nphys/journal/vaop/ncurrent/full/nphys2753.html

#acknowledgments

Daniel Stolte | University of Arizona
Further information:
http://www.arizona.edu

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>