Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flaky graphene makes reliable chemical sensors

18.01.2012
Scientists from the University of Illinois at Urbana-Champaign and the company Dioxide Materials have demonstrated that randomly stacked graphene flakes can make an effective chemical sensor.

The researchers created the one-atom-thick carbon lattice flakes by placing bulk graphite in a solution and bombarding it with ultrasonic waves that broke off thin sheets.

The researchers then filtered the solution to produce a graphene film, composed of a haphazard arrangement of stacked flakes, that they used as the top layer of a chemical sensor. When the graphene was exposed to test chemicals that altered the surface chemistry of the film, the subsequent movement of electrons through the film produced an electrical signal that flagged the presence of the chemical.

The researchers experimented by adjusting the volume of the filtered solution to make thicker or thinner films. They found that thin films of randomly stacked graphene could more reliably detect trace amounts of test chemicals than previously designed sensors made from carbon nanotubes or graphene crystals.

The results are accepted for publication in the AIP's journal Applied Physics Letters.

The researchers theorize that the improved sensitivity is due to the fact that defects in the carbon-lattice structure near the edge of the graphene flakes allow electrons to easily "hop" through the film.

Article: "Chemical Sensors Based On Randomly Stacked Graphene Flakes" is accepted for publication in Applied Physics Letters.

Authors: Amin Salehi-Khojin (1, 7), David Estrada (2, 3), Kevin Y. Lin (1), Ke Ran (4, 5), Richard T. Haasch (5), Jian-Min Zuo (4, 5), Eric Pop (2, 3, 6), and Richard I. Masel (7).

(1) Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign
(2) Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign
(3) Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign
(4) Department of Material Science and Engineering, University of Illinois at Urbana-Champaign
(5) Materials Research Laboratory, University of Illinois at Urbana-Champaign
(6) Beckman Institute, University of Illinois at Urbana-Champaign
(7) Dioxide Materials, Champaign, Ill.

Catherine Meyers | EurekAlert!
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht Creative use of noise brings bio-inspired electronic improvement
26.09.2017 | American Institute of Physics

nachricht The fastest light-driven current source
26.09.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Bacterial Nanosized Speargun Works Like a Power Drill

26.09.2017 | Life Sciences

The fastest light-driven current source

26.09.2017 | Physics and Astronomy

Beer can lift your spirits

26.09.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>