Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Find Your Own Place On the Red Planet

02.06.2009
ASU has teamed with Google to create a new feature in Google Earth 5.0 that lets members of the public suggest places on Mars to photograph with ASU's THEMIS camera on NASA's Mars Odyssey orbiter.

Arizona State University researchers and scientists have created two new features for Google Earth 5.0, the popular online application that lets users tour Earth, the starry sky, and the Red Planet Mars.

The first of the new features lets anyone, anywhere, recommend places on Mars to photograph with ASU's THEMIS camera on NASA's Mars Odyssey orbiter. The second new feature shows the most recent infrared images of Mars sent back to Earth from the THEMIS camera.

THEMIS is the Thermal Emission Imaging System, a multiband infrared and visual camera designed at ASU by Dr. Philip Christensen. A Regents' Professor of Geological Sciences in the School of Earth and Space Exploration, Christensen is THEMIS' principal investigator and also director of the Mars Space Flight Facility on the Tempe campus.

"These two features, developed by our staff in cooperation with programmers at Google, will help everyone have a lot more fun exploring the Red Planet," says Christensen. "It's public engagement at its best."

Hey Mars, say cheese!

"We wanted to give the general public a way to suggest places on Mars for THEMIS to photograph," says Christensen. "Using the new feature, people can recommend sites, and these recommendations go to mission scientists who will decide what areas THEMIS images. If a public suggestion matches what the researchers choose, we'll notify the person who suggested the site and let them see the image as soon as we do."

To suggest a place for THEMIS to photograph, viewers need two things: Google Earth 5.0 and a file that is updated each week giving the spacecraft's Mars orbital groundtrack. Google Earth 5.0 is available at http://earth.google.com.

To get the orbital track, users should go to http://suggest.mars.asu.edu and follow the simple steps to register. Registering takes users to a page to download the orbital track file and it also lets them make image suggestions without having to enter an e-mail address with each image suggestion.

Registering also creates a customized page where users can see their past image suggestions and find links to their successful ones.

With the orbital track file downloaded, viewers start Google Earth and switch the globe to Mars (via the Planets toolbar button, which resembles the planet Saturn). Then viewers open the orbital track file from within Google Earth. Viewers can also just double-click on the orbital file once Google Earth has been set to Mars as its planet.

The places where THEMIS can take images during the coming week appear as stripes wrapped onto the Martian globe. Viewers click on stripe segments to recommend places for THEMIS to photograph.

"Each viewer can make up to 10 imaging suggestions per week," says Christian Yates, software engineer at the Mars Space Flight Facility. Yates designed the online interface for the project. If a site picked by a member of the public matches one chosen by the mission scientists, the suggester will be sent a link providing access to the image after it has come from the spacecraft.

Says Yates, "Making 10 image selections a week, a typical viewer will probably get at least one image."

THEMIS takes images at both visual and infrared wavelengths; viewers using Suggest an Image are making recommendations for visual images. These have higher resolutions than THEMIS' infrared ones: 60 feet (18 meters) per pixel versus 330 feet (100 m) per pixel for infrared.

"Taking pictures with an orbiting satellite can be a complicated business, but this tool makes it much easier," says Eric Engle, scientific software engineer at the Mars Space Flight Facility and lead project developer for the ASU team. "We hope people enjoy this chance to participate with us in exploring Mars."

Live From Mars

The ASU team also developed, with Google's programmers, a second new Google Earth feature called Live From Mars. It shows the latest infrared images from THEMIS as soon as the mission team at ASU receives them; look for the new feature among the Mars Gallery layers in Google Earth 5.0.

When the layer is clicked on, viewers see the Martian globe with the most recent THEMIS infrared images displayed on the surface, each flagged with a square symbol. Viewers can zoom in on each image to see details more clearly.

Mousing over the square symbol brings up the image's identification number, and clicking on the symbol opens a bubble window with more information (such as latitude and longitude, and date and time the photo was taken). The bubble also has links to the THEMIS camera site at ASU and NASA's Mars Odyssey site.

THEMIS' designer Christensen notes that both new features let the general public look over the shoulder of Mars researchers - and Suggest an Image in particular offers a potentially unique reward:

"Because the coverage of Mars by THEMIS at visual wavelengths is by no means complete," Christensen says, "some people who recommend an image target could be the first humans ever to see that particular place in such detail."

Two images are available at: http://asunews.asu.edu/20090528_marsphoto

Robert Burnham | Newswise Science News
Further information:
http://www.asu.edu

More articles from Physics and Astronomy:

nachricht When helium behaves like a black hole
22.03.2017 | University of Vermont

nachricht Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars
22.03.2017 | International Centre for Radio Astronomy Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>