Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Extreme plasma theories put to the test

07.08.2012
The first controlled studies of extremely hot, dense matter have overthrown the widely accepted 50-year old model used to explain how ions influence each other's behavior in a dense plasma. The results should benefit a wide range of fields, from research aimed at tapping nuclear fusion as an energy source to understanding the inner workings of stars.

The study also demonstrates the unique capabilities of the Linac Coherent Light Source (LCLS) X-ray laser at the U.S. Department of Energy (DOE)'s SLAC National Accelerator Laboratory. While researchers have created extremely hot and dense plasmas before, LCLS allows them to measure the detailed properties of these states and test a fundamental class of plasma physics for the first time ever.


The peaks on this chart represent key energy signatures produced in a dense ultra-hot plasma, which for the first time allow detailed measurements of the effects of this plasma environment.

Credit: Image courtesy of Sam Vinko, University of Oxford

Plasma is sometimes referred to as the fourth state of matter – alongside solid, liquid and gas – and in this case it was hundreds of times hotter than the surface of the sun (2 million kelvins or 3.6 million degrees Fahrenheit). These measurements, reported by an international team of researchers and published this week in Physical Review Letters, contradict the prevailing model that scientists have used for a half-century to understand the conditions inside plasmas.

"We don't think this could have been done elsewhere," said Justin Wark, leader of a group at Oxford University that participated in the study. "Having an X-ray laser is key."

The international research team, which made the plasma by targeting super-thin aluminum with X-rays at LCLS, reported its initial results in January. Now, in a second study based on a new analysis of data from the same experiment, the group tackled another question: How are atoms in such a hot, dense plasma affected by their environment?

The researchers were able to pinpoint how much energy it takes to knock electrons from highly charged atoms in a dense plasma. "That's a question no one's been able to test properly before," said Orlando Ciricosta of Oxford University and lead author of the study, which included scientists from three DOE national laboratories.

The LCLS offers a unique test bed for these studies: It provides a very controlled environment for measuring extreme phenomena, a laser beam with finely tuned energies and a way to precisely measure the properties of a plasma at a specific solid density.

The new analysis gives insight into the sorts of plasmas scientists need to create in some experimental approaches to fusion, the process that powers stars, in which the cores of super-condensed atoms combine and release massive amounts of energy. The research may lead to improved modeling for certain aspects of fusion, as it gives detailed information about the process where tightly packed atoms begin to lose their autonomy as the orbits of their associated electrons overlap.

Scientists use complicated algorithms that may include millions of lines of code to simulate the behavior of superheated matter and build better models of how fusion works.

"Even very sophisticated computer codes used to simulate dense plasmas usually employ an old model from 1966 to simulate the effects of the plasma environment," Ciricosta said. "Our work at the LCLS has shown that this widely used model does not fit the data. In an extraordinary twist of fate, it turns out that an even earlier approach from 1963 does a far better job."

Wark said he expects the findings will have "significant impact" in the plasma physics community, as the 1963 model can be easily applied to improve existing simulations in a range of fields. However, the complete physics is still far from clear, and he cautioned that more testing and refinement may be necessary.

"We're not going to claim any current model works under all conditions and works for everything," he said. "We would really like people to go and revisit this problem, to see if they can come up with something even more sophisticated."

Wark's team included researchers from Oxford; SLAC; Lawrence Berkeley National Laboratory; Lawrence Livermore National Laboratory; University of California – Berkeley; the International Atomic Energy Agency in Austria; the Plasma Physics Department at AWE in the United Kingdom; the Institute of Physics ASCR in the Czech Republic; and DESY and the Friedrich-Schiller University in Germany.

The team's research is available for download from Physical Review Letters: http://prl.aps.org/abstract/PRL/v109/i6/e065002

Further analysis is also provided in a "Viewpoint" from the American Physical Society (APS): http://physics.aps.org/articles/v5/88

LCLS is supported by the U.S. Department of Energy's Office of Science. SLAC is a multi-program laboratory exploring frontier questions in photon science, astrophysics, particle physics and accelerator research. Located in Menlo Park, California, SLAC is operated by Stanford University for the U.S. Department of Energy Office of Science. To learn more, please visit www.slac.stanford.edu.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Andy Freeberg | EurekAlert!
Further information:
http://www.stanford.edu
http://www.slac.stanford.edu

Further reports about: California Ciricosta LCLS Laboratory Physic SLAC X-ray microscopy plasma physics

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>