Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Experiment Reveals Conductor-insulator Transition

21.08.2009
University of Chicago physicists have, for the first time, directly observed a group of atoms transform from a conducting state into an insulating state.

“It opens up much richer phenomena to explore,” said Cheng Chin, an assistant professor in physics at the University. Chin’s team conducted the experiment as the first step in a project to simulate the dynamics of electrons in a solid.

“How you can make the transition from a conducting material to a non-conducting material is difficult to conceive,” said Chin. But his team actually observed such a transition using super-cooled atoms to simulate the behavior of electrons.

“It’s nearly impossible to resolve the dynamics of electrons,” Chin said, because they move from atom to atom in trillionths of a second. The Chicago physicists dodged this problem by cooling a single layer of cesium atoms to temperatures near absolute zero (minus 459.67 degrees Fahrenheit). Then they magnetically controlled the motion of the atoms on a millisecond time scale (thousands of a second). This is a billion times slower than electrons move, but the physics remains the same.

“We made a thin film of atoms, and then we watched how they distributed themselves inside our chamber.”

What they observed confirmed a prediction that another team of scientists made in 2000: While the atoms are in a superfluid state (conducting), they experience very little repulsive force between each other. When moving freely, these atoms can become compressed with the application of pressure.

“There’s a certain mobility when you apply a force. You can easily compress a conducting sample,” Chin said.

But when the Chicago researchers applied a magnetic field, initiating a much greater repulsive force between the atoms, they became jammed and could not be deformed. The atoms had entered an incompressible insulating state.

Citation: Gemelke, Nathan; Zhang, Xibo; Hung, Chen-Lung; and Chin, Cheng, “In-situ Observation of Incompressible Mott-Insulating Domains of Ultracold Atomic Gases,” Nature, Aug. 20, 2009.

Funding sources: National Science Foundation, Defense Advanced Research Projects Agency, and the Grainger Foundation.

Steve Koppes | Newswise Science News
Further information:
http://www.uchicago.edu

More articles from Physics and Astronomy:

nachricht Squeezing light at the nanoscale
18.06.2018 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht The Fraunhofer IAF is a »Landmark in the Land of Ideas«
15.06.2018 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>