Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Experiment Reveals Conductor-insulator Transition

21.08.2009
University of Chicago physicists have, for the first time, directly observed a group of atoms transform from a conducting state into an insulating state.

“It opens up much richer phenomena to explore,” said Cheng Chin, an assistant professor in physics at the University. Chin’s team conducted the experiment as the first step in a project to simulate the dynamics of electrons in a solid.

“How you can make the transition from a conducting material to a non-conducting material is difficult to conceive,” said Chin. But his team actually observed such a transition using super-cooled atoms to simulate the behavior of electrons.

“It’s nearly impossible to resolve the dynamics of electrons,” Chin said, because they move from atom to atom in trillionths of a second. The Chicago physicists dodged this problem by cooling a single layer of cesium atoms to temperatures near absolute zero (minus 459.67 degrees Fahrenheit). Then they magnetically controlled the motion of the atoms on a millisecond time scale (thousands of a second). This is a billion times slower than electrons move, but the physics remains the same.

“We made a thin film of atoms, and then we watched how they distributed themselves inside our chamber.”

What they observed confirmed a prediction that another team of scientists made in 2000: While the atoms are in a superfluid state (conducting), they experience very little repulsive force between each other. When moving freely, these atoms can become compressed with the application of pressure.

“There’s a certain mobility when you apply a force. You can easily compress a conducting sample,” Chin said.

But when the Chicago researchers applied a magnetic field, initiating a much greater repulsive force between the atoms, they became jammed and could not be deformed. The atoms had entered an incompressible insulating state.

Citation: Gemelke, Nathan; Zhang, Xibo; Hung, Chen-Lung; and Chin, Cheng, “In-situ Observation of Incompressible Mott-Insulating Domains of Ultracold Atomic Gases,” Nature, Aug. 20, 2009.

Funding sources: National Science Foundation, Defense Advanced Research Projects Agency, and the Grainger Foundation.

Steve Koppes | Newswise Science News
Further information:
http://www.uchicago.edu

More articles from Physics and Astronomy:

nachricht Study shows how water could have flowed on 'cold and icy' ancient Mars
18.10.2017 | Brown University

nachricht Los Alamos researchers and supercomputers help interpret the latest LIGO findings
18.10.2017 | DOE/Los Alamos National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

Study shows how water could have flowed on 'cold and icy' ancient Mars

18.10.2017 | Physics and Astronomy

Navigational view of the brain thanks to powerful X-rays

18.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>