Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Experiment Reveals Conductor-insulator Transition

21.08.2009
University of Chicago physicists have, for the first time, directly observed a group of atoms transform from a conducting state into an insulating state.

“It opens up much richer phenomena to explore,” said Cheng Chin, an assistant professor in physics at the University. Chin’s team conducted the experiment as the first step in a project to simulate the dynamics of electrons in a solid.

“How you can make the transition from a conducting material to a non-conducting material is difficult to conceive,” said Chin. But his team actually observed such a transition using super-cooled atoms to simulate the behavior of electrons.

“It’s nearly impossible to resolve the dynamics of electrons,” Chin said, because they move from atom to atom in trillionths of a second. The Chicago physicists dodged this problem by cooling a single layer of cesium atoms to temperatures near absolute zero (minus 459.67 degrees Fahrenheit). Then they magnetically controlled the motion of the atoms on a millisecond time scale (thousands of a second). This is a billion times slower than electrons move, but the physics remains the same.

“We made a thin film of atoms, and then we watched how they distributed themselves inside our chamber.”

What they observed confirmed a prediction that another team of scientists made in 2000: While the atoms are in a superfluid state (conducting), they experience very little repulsive force between each other. When moving freely, these atoms can become compressed with the application of pressure.

“There’s a certain mobility when you apply a force. You can easily compress a conducting sample,” Chin said.

But when the Chicago researchers applied a magnetic field, initiating a much greater repulsive force between the atoms, they became jammed and could not be deformed. The atoms had entered an incompressible insulating state.

Citation: Gemelke, Nathan; Zhang, Xibo; Hung, Chen-Lung; and Chin, Cheng, “In-situ Observation of Incompressible Mott-Insulating Domains of Ultracold Atomic Gases,” Nature, Aug. 20, 2009.

Funding sources: National Science Foundation, Defense Advanced Research Projects Agency, and the Grainger Foundation.

Steve Koppes | Newswise Science News
Further information:
http://www.uchicago.edu

More articles from Physics and Astronomy:

nachricht New type of smart windows use liquid to switch from clear to reflective
14.12.2017 | The Optical Society

nachricht New ultra-thin diamond membrane is a radiobiologist's best friend
14.12.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>