Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First evidence for a spherical magnesium-32 nucleus

03.02.2011
Exploring an 'island of inversion,' physicists find new clues to element synthesis in supernovae

Elements heavier than iron come into being only in powerful stellar explosions, supernovae. During nuclear reactions all kinds of short-lived atomic nuclei are formed, including more stable combinations – the so-called magic numbers – predicted by theory. Yet here, too, there are exceptions: the islands of inversion. Headed by physicists from the Excellence Cluster Universe at the Technische Universitaet Muenchen (TUM), an international team of scientists has now taken a closer look at the island that was first discovered. They have now published their results in Physical Review Letters.


A new discovery, and the questions it raises, could help explain in greater detail how elements are synthesized in stellar explosions -- such as the supernova that left behind the Crab Nebula.
Credit: VLT/ESO

All chemical elements known on earth come from space. The most common elements in the universe, hydrogen and helium, were created shortly after the Big Bang. Other elements, such as carbon and oxygen, came into existence later, through the fusion of atomic nuclei inside stars. Elements heavier than iron owe their emergence to gigantic stellar explosions, known as supernovae. These include, for instance, the precious metals gold and silver or the radioactive uranium.

The cauldron of a supernova gives birth to a whole array of high-mass atomic nuclei, which decay to stable elements via different short-lived intermediate stages. Analogous to the shell model for electrons, nuclear physicists developed a model that predicts particularly high stability for specific combinations in the number of neutrons and protons. These are the "magic numbers": the shells are full and the nuclei nearly spherical.

However, there are "magic" nuclei that deviate from the expected shell structure. An international collaboration under the direction of physicists from the Cluster of Excellence Origin and Structure of the Universe at the TUM took a closer look at the nuclei in a domain with the magic neutron number 20, also known as the "island of inversion." Their measurements with REX-ISOLDE, an accelerator for radioactive ion beams at CERN, led to surprising results.

In their experiment the scientists studied the neutron-rich isotope magnesium-32 by shooting a magnesium-30 beam at a titanium film loaded with tritium, a radioactive isotope of hydrogen. In a so-called pair transfer reaction, two neutrons are knocked off the tritium and transferred to the magnesium nucleus, thus turning it into magnesium-32.

The neutron-rich isotope magnesium-32, whose nucleus has 20 neutrons and 12 protons, is supposed to be magic and, as such, should have a spherical shape. However, the lowest energy state in magnesium-32 is not spherical, but deformed. The nucleus is reminiscent of an egg-shaped American football. The spherical configuration was not supposed to ensue until higher states of energy were reached.

For the first time ever, the scientists succeeded in confirming the existence of the spherical magnesium-32 nucleus. What's more, the spherical magnesium-32 nucleus was generated at a much lower energy level than theoretically predicted. This result has yet again put a question mark on the theoretical models describing changes in shell structure in this and other regions of the table of nuclides.

"We were overjoyed to have finally succeeded in confirming the existence of the spherical magnesium-32 nucleus," says Professor Kruecken, Chair of Hadrons and Nuclear Physics at the TU Muenchen. "But these insights present new challenges to us physicists. In order to be able to predict the exact course of element synthesis in stellar explosions, we need to better understand the mechanism that causes the changes in shell structure." The scientists assume it will need a series of further experiments before they can give an unambiguous description of the processes related to the mysterious islands of inversion and new magic numbers.

This work was supported by the Federal Ministry of Education and Research of Germany (BMBF) under contracts 06MT238, 06MT9156, 06KY9136I, 06DA9036I06DA9041I, by the German Research Foundation (DFG) via the Cluster of Excellence Origin and Structure of the Universe, by the European Comission within the FP6 through I3-EURONS (contract no. RII3-CT-2004- 506065), by the Fonds Wetenschappelijk Onderzoek Vlaanderen (FWO), GOA/2004/03 and IAP P6/23 (Belgium), by the Helmholtz International Center for FAIR (Facility for Antiproton and Ion Research) and the US-Department of Energy under contract number DE-AC02-05CH11231.

Original publication:

Discovery of the Shape Coexisting 0+ State in 32Mg by a Two Neutron Transfer Reaction,
K. Wimmer et.al., Physical Review Letters, 105, 252501 (2010) –
DOI: 10.1103/PhysRevLett.105.252501
Link: http://dx.doi.org/10.1103/PhysRevLett.105.252501
Contact:
Prof. Dr. Reiner Kruecken
Technische Universitaet Muenchen
Department of Physics, E 12
James Franck Str. 1, 85748 Garching, Germany
Tel.: +49 89 289 12434 – Fax: +49 89 289 12435
E-Mail: Reiner.Kruecken@ph.tum.de
The Excellence Cluster "Origin and Structure of the Universe" was established at the Technische Universitaet Muenchen (TUM) in 2006. The research collaboration unifies the physics faculties of the TUM and Ludwig-Maximilians-Universitaet (LMU) as well as the University Observatory at the LMU. Further partners in the Cluster include the Max-Planck-Institutes for Physics, Astrophysics, for Extraterrestrial Physics and Plasma Physics as well as the European Southern Observatory (ESO). In the collaboration, more than 200 scientists are committed to decode the great secrets of the Universe. The Cluster is located at the Research Center Garching.

Technische Universitaet Muenchen (TUM) is one of Europe's leading universities. It has roughly 460 professors, 7,500 academic and non-academic staff (including those at the university hospital "Rechts der Isar"), and 26,000 students. It focuses on the engineering sciences, natural sciences, life sciences, medicine, and economic sciences. After winning numerous awards, it was selected as an "Elite University" in 2006 by the Science Council (Wissenschaftsrat) and the German Research Foundation (DFG). The university's global network includes an outpost in Singapore. TUM is dedicated to the ideal of a top-level research based entrepreneurial university. http://www.tum.de

Andreas Battenberg | EurekAlert!
Further information:
http://www.tum.de

More articles from Physics and Astronomy:

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>