Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Is Europa habitable?

08.08.2013
Defining the scientific goals of a NASA mission to explore Jupiter's moon

Europa, the ice-covered moon of the planet Jupiter, may be able to support life. NASA has commissioned a team of expert scientists to consider the science goals for a landed spacecraft mission to the surface of Europa, and to investigate the composition and geology of its icy shell and the potential for life within its interior ocean.


Astrobiology, led by Sherry L. Cady, Ph.D., and a prominent international editorial board comprised of esteemed scientists in the field, is the authoritative resource for the most up-to-date information and perspectives on exciting new research findings and discoveries emanating from interplanetary exploration and terrestrial field and laboratory research programs.

Credit: © Mary Ann Liebert, Inc., publishers

The NASA-appointed Science Definition Team outlines the main priorities of a future lander mission to Europa to study its potential habitability in an article in Astrobiology, a peer-reviewed journal from Mary Ann Liebert, Inc., publishers. The article is available free on the Astrobiology website.

The article "Science Potential from a Europa Lander" presents the three main objectives of a future mission designed to land a robotic spacecraft on the surface of Europa and to investigate its potential to support life. NASA's Science Definition Team has clearly identified three main priorities: investigate the composition and chemistry of Europa's ocean; characterize the thickness, uniformity, and dynamics of its icy shell; and study the moon's human-scale surface geology. In addition, the NASA-appointed team describes the types of studies and payload of instruments recommended to achieve these objectives.

R.T. Pappalardo and a large group of coauthors contribute a broad range of knowledge and expertise and represent leading government and academic institutions, including NASA's Jet Propulsion Laboratory, managed by the California Institute of Technology (Pasadena), University of Colorado (Boulder), University of Texas at Austin, NASA's Goddard Space Flight Center (Greenbelt, MD), NASA's Ames Research Center (Moffett Field, CA), University of Iowa (Iowa City), NASA's Marshall Space Flight Center (Huntsville, AL), Southwest Research Institute (Boulder, CO), The Johns Hopkins University Applied Physics Laboratory (Laurel, MD), Arizona State University (Tempe), and Massachusetts Institute of Technology (Cambridge).

"Landing on Europa and touching its surface is a visionary goal of planetary science," says Robert Pappalardo, PhD of NASA's Jet Propulsion Laboratory. "This is a difficult technical challenge that is probably many years away. Understanding the key scientific questions to be addressed by a future Europa lander helps us to focus on the technologies required to get us there, and on the necessary data that might be attained by a precursor mission that could scout out landing sites. Europa is the most likely place in our solar system beyond Earth to have life today, and a landed mission would be the best way to search for signs of life."

"Landing on the surface of Europa is a key step in the astrobiological investigation of that world," says Christopher McKay, PhD, Senior Editor of Astrobiology and a scientist at NASA Ames Research Center, Moffett Field, CA. "The paper by Pappalardo et al. outlines the science that could be done by such a lander. The hope would be that surface materials, possibly near the linear crack features, include biomarkers carried up from the ocean."

About the Journal

Astrobiology, led by Sherry L. Cady, PhD and a prominent international editorial board comprised of esteemed scientists in the field, is the authoritative resource for the most up-to-date information and perspectives on exciting new research findings and discoveries emanating from interplanetary exploration and terrestrial field and laboratory research programs. The Journal is published monthly online with Open Access options and in print, and is the Official Journal of the Astrobiology Society. Complete tables of content and a sample issue may be viewed on the Astrobiology website.
About the Publisher

Mary Ann Liebert, Inc., publishers is a privately held, fully integrated media company known for establishing authoritative peer-reviewed journals in many promising areas of science and biomedical research, including New Space and High Altitude Medicine & Biology. Its biotechnology trade magazine, Genetic Engineering & Biotechnology News (GEN), was the first in its field and is today the industry's most widely read publication worldwide. A complete list of the firm's more than 70 journals, books, and newsmagazines is available on the Mary Ann Liebert, Inc., publishers website.

Bill Schappert | EurekAlert!
Further information:
http://www.liebertpub.com

More articles from Physics and Astronomy:

nachricht Basque researchers turn light upside down
23.02.2018 | Elhuyar Fundazioa

nachricht Attoseconds break into atomic interior
23.02.2018 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>