Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Escape from frustration

26.01.2009
When the bonds between atoms suddenly alter in strength, structural changes in symmetry result

Everyone prefers to avoid the frustration of failing to achieve a desired outcome. Now it seems this even applies to materials and the arrangement of their atomic magnets, referred to as spins.

Researchers from RIKEN’s Nishina Center for Accelerator-Based Science in Wako, in collaboration with researchers from the University of Hyogo and Kyoto University, have uncovered an intriguing interplay between the arrangement of atomic spins and atomic interactions in the metallic compound Mo3Sb7.

The molybdenum (Mo) atoms in Mo3Sb7 crystals are arranged in octahedra. Unusually, the atomic bonds between the Mo atoms at the tips of the octahedra are stronger than between the Mo atoms in the plane. This leads to the formation of ‘dumbbells’ of Mo pairs along the three main crystal directions (Fig. 1). “The unusual arrangement between the dumbbells and the other Mo atoms makes this material unique and interesting to study,” comments Isao Watanabe from the research team.

Of particular interest is a sudden structural change that occurs at temperatures below 50 K (-223.15 °C). The origin of this phase transition has now been unveiled by a number of experiments that probe the magnetic and electric properties of the Mo atoms (1). These measurements present clear evidence that the phase transition is accompanied by symmetry changes in the crystal.

The symmetry changes are triggered by the spins associated with Mo atoms. The researchers found that an unusual competition in interaction between the Mo atoms takes place. At the phase transition, the strength of the interaction between the Mo atoms in the octahedra becomes comparable to the bond between the Mo atoms in the dumbbells. Consequently, the Mo atomic spins then begin to arrange in an up-and-down fashion along the entire crystal rather than within the dumbbells. However, owing to the particularities of the three-dimensional crystal structure, a periodic up-and-down arrangement, which is homogeneous across the entire crystal, is impossible. Frustration is the result.

To break this frustration the Mo octahedra elongate in one direction, breaking the crystal symmetry. This in turn finally allows the Mo dumbbells to order themselves periodically throughout the crystal in an arrangement termed a ‘valence bond crystal’.

The unusual competition of the atomic bonds between the Mo atoms in Mo3Sb7 has led to dramatic consequences involving crystallographic, electronic and magnetic properties. “This is the first example of its kind and we expect that this opens a new field to study similarly complex systems,” say Watanabe and his colleagues.

Reference

1. Koyama, T., Yamashita, H., Takahashi, Y, Kohara, T., Watanabe, I., Tabata, Y. & Nakamura, H. Frustration-induced valence bond crystal and its melting in Mo3Sb7. Physical Review Letters 101, 126404 (2008).

Saeko Okada | ResearchSEA
Further information:
http://www.rikenresearch.riken.jp/research/629/
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht Taking a spin on plasma space tornadoes with NASA observations
20.11.2017 | NASA/Goddard Space Flight Center

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>