Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

EPOXI finds Hartley 2 is a hyperactive comet

17.06.2011
Hartley 2's hyperactive state, as studied by NASA's EPOXI mission, is detailed in a new paper published in this week's issue of the journal Science by an international team of scientists that includes Lucy McFadden of NASA's Goddard Space Flight Center in Greenbelt, Md.

After visiting a comet and imaging distant stars for hints of extrasolar planets, you could say the spacecraft used for EPOXI had seen its fair share of celestial wonders. But after about 3.2 billion miles (5.1 billion kilometers) of deep space travel, one final wonder awaited the mission's project and science teams. On Nov. 4, 2010, the EPOXI mission spacecraft flew past a weird little comet called Hartley 2.

"From all the imaging we took during approach, we knew the comet was a little skittish even before flyby," said EPOXI Project Manager Tim Larson of NASA's Jet Propulsion Laboratory in Pasadena, Calif. "It was moving around the sky like a knuckleball and gave my navigators fits, and these new results show this little comet is downright hyperactive."

The EPOXI mission found that the strong activity in water release and carbon dioxide-powered jets did not occur equally in the different regions of the comet. During the spacecraft's flyby of the comet -- with closest approach of 431 miles (694 kilometers) -- carbon dioxide-driven jets were seen at the ends of the comet, with most occurring at the small end. In the middle region or waist of the comet, water was released as vapor with very little carbon dioxide or ice. The latter findings indicate that material in the waist is likely material that came off the ends of the comet and was redeposited.

"Hartley 2 is a hyperactive little comet, spewing out more water than most other comets its size," said Mike A'Hearn, principal investigator of EPOXI from the University of Maryland, College Park. "When warmed by the sun, dry ice -- frozen carbon dioxide -- deep in the comet's body turns to gas jetting off the comet and dragging water ice with it."

Although Hartley 2 is the only such hyperactive comet visited by a spacecraft, scientists know of at least a dozen other comets that also are relatively high in activity for their size and which are probably driven by carbon dioxide or carbon monoxide.

"These could represent a separate class of hyperactive comets," said A'Hearn. "Or they could be a continuum in comet activity extending from Hartley 2-like comets all the way to the much less active, "normal" comets that we are more used to seeing."

The study provides several new twists in the unfolding story of this small cometary dynamo, including: (1) the smooth, relatively inactive waist of the peanut-shaped comet is likely re-deposited rather than primordial material; (2) Hartley 2 has an 'excited state of rotation' because it spins around one axis, but also tumbles around a different axis; and (3) on its larger, rougher ends, the comet's surface is dotted with glittering, blocky objects that can reach approximately 165 feet (50 meters) high and 260 feet (80 meters) wide.

Another mission discovery is that on the knobby ends of Hartley 2, particularly the smaller end, the surface terrain is dotted with block-like, shiny objects, some as big as one block long and 16 stories tall. These objects appear to be two to three times more reflective than the surface average.

An added surprise was a pronounced increase in the amount of CN gas in the comet's coma. For nine days in September, about 10 million times more CN gas was given off than usual. This dramatic and unexpected change, called the "CN anomaly," was analyzed by McFadden and Dennis Bodewits, a former postdoctoral fellow at NASA Goddard who is now at the University of Maryland, and their colleagues.

The amount of CN in a comet's coma is thought to hold clues to how comets formed and evolved during their lifetime. In other cases where a comet has had a big outburst, a lot of dust has been released at the same time. But in this case, the amount of dust did not change, yet the CN gas abundance exploded.

"We aren't sure why this dramatic change happened," says McFadden. "We know that Hartley 2 gives off considerably more CN gas than comet Tempel 1, which was studied earlier by a probe released by the Deep Impact spacecraft. But we don't know why Hartley 2 has more CN, and we don't know why the amount coming off the comet changed so drastically for a short period of time. We've never seen anything like this before."

EPOXI was an extended mission that utilized the already "in-flight" Deep Impact spacecraft to explore distinct celestial targets of opportunity. The name EPOXI itself is a combination of the names for the two extended mission components: the extrasolar planet observations, called Extrasolar Planet Observations and Characterization (EPOCh), and the flyby of comet Hartley 2, called the Deep Impact Extended Investigation (DIXI). The spacecraft retained the name "Deep Impact." During its approach, encounter and departure from comet Hartley 2, the spacecraft beamed back over 117,000 images and spectra.

JPL managed the EPOXI and Deep Impact missions for NASA's Science Mission Directorate, Washington. The EPOXI mission was part of the Discovery Program managed at NASA's Marshall Space Flight Center in Huntsville, Ala. The University of Maryland, College Park, is home to Michael A'Hearn, principal investigator for EPOXI. Drake Deming of NASA's Goddard Space Flight Center, Greenbelt, Md., is the science lead for the EPOXI mission's extrasolar planet observations. The spacecraft was built for NASA by Ball Aerospace & Technologies Corp., Boulder, Colo.

Liz Zubritsky | EurekAlert!
Further information:
http://www.Nasa.gov

More articles from Physics and Astronomy:

nachricht NASA's Fermi catches gamma-ray flashes from tropical storms
25.04.2017 | NASA/Goddard Space Flight Center

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>